Optical sensed image fusion with dynamic neural networks

被引:0
|
作者
Shkvarko, YV [1 ]
Ibarra-Manzano, OG [1 ]
Jaime-Rivas, R [1 ]
Andrade-Lucio, JA [1 ]
Alvarado-Méndez, E [1 ]
Rojas-Laguna, R [1 ]
Torres-Cisneros, M [1 ]
Alvarez-Jaime, JA [1 ]
机构
[1] Univ Guanajuato, Fac Ingn Mecan Elect & Electron, Salamanca, Gto, Mexico
关键词
image improvement; neural network; system fusion;
D O I
10.1117/12.437178
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The neural network-based technique for improving the quality of the image fusion is proposed as required for the remote sensing (RS) imagery. We propose to exploit information about the point spread functions of the corresponding RS imaging, systems combining it with prior realistic knowledge about the properties of the scene contained in the maximum entropy (ME) a priori image model. Applying the aggregate regularization method to solve the fusion tasks aimed to achieve the best resolution and noise suppression performances of the overall resulting image solves the problem. The proposed fusion method assumes the availability to control the design parameters, which influence the overall restoration performances. Computationally, the fusion method is implemented using the maximum entropy Hopfield-type neural network (MENN) with adjustable parameters. Simulations illustrate the improved performances of the developed MENN-based image fusion method.
引用
收藏
页码:632 / 635
页数:2
相关论文
共 50 条
  • [21] Image sensing with multilayer nonlinear optical neural networks
    Wang, Tianyu
    Sohoni, Mandar M.
    Wright, Logan G.
    Stein, Martin M.
    Ma, Shi-Yuan
    Onodera, Tatsuhiro
    Anderson, Maxwell G.
    McMahon, Peter L.
    NATURE PHOTONICS, 2023, 17 (05) : 408 - +
  • [22] Image sensing with multilayer nonlinear optical neural networks
    Tianyu Wang
    Mandar M. Sohoni
    Logan G. Wright
    Martin M. Stein
    Shi-Yuan Ma
    Tatsuhiro Onodera
    Maxwell G. Anderson
    Peter L. McMahon
    Nature Photonics, 2023, 17 : 408 - 415
  • [23] Image fusion techniques for remote sensed SPOT images
    Das, Asha
    Revathy, K.
    ICCIMA 2007: INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND MULTIMEDIA APPLICATIONS, VOL III, PROCEEDINGS, 2007, : 482 - 489
  • [24] Multimodal feature fusion based on heterogeneous optical neural networks
    Yi-zhen, Zheng
    Jian, Dai
    Tian, Zhang
    Kun, Xu
    CHINESE OPTICS, 2023, 16 (06) : 1343 - 1355
  • [25] Fusion study on optical correlation pattern recognition and neural networks
    Zhang, YX
    18TH CONGRESS OF THE INTERNATIONAL COMMISSION FOR OPTICS: OPTICS FOR THE NEXT MILLENNIUM, TECHNICAL DIGEST, 1999, 3749 : 247 - 248
  • [26] SOLVING DEEP NEURAL NETWORKS WITH ORDINARY DIFFERENTIAL EQUATIONS FOR REMOTELY SENSED HYPERSPECTRAL IMAGE CLASSIFICATION
    Paoletti, M. E.
    Haut, J. M.
    Plaza, J.
    Plaza, A.
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 576 - 579
  • [27] A NEW SPATIO-TEMPORAL FUSION METHOD FOR REMOTELY SENSED DATA BASED ON CONVOLUTIONAL NEURAL NETWORKS
    Li, Yunfei
    Liu, Chenying
    Yan, Lin
    Li, Jun
    Plaza, Antonio
    Li, Bo
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 835 - 838
  • [28] Low Light Image Enhancement by Multispectral Fusion and Convolutional Neural Networks
    Mei, Lin
    Jung, Cheolkon
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 203 - 209
  • [29] An image recognition method based on multiple BP neural networks fusion
    Ni, JJ
    Ma, XP
    Xu, LZ
    Wang, JY
    ICIA 2004: Proceedings of 2004 International Conference on Information Acquisition, 2004, : 323 - 326
  • [30] Convolutional Neural Networks and Multimodal Fusion for Text Aided Image Classification
    Wang, Dongzhe
    Mao, Kezhi
    Ng, Gee-Wah
    2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 1063 - 1069