Parameter identification problem for a parabolic equation - application to the Black-Scholes option pricing model

被引:7
|
作者
Korolev, Yury M.
Kubo, Hideo
Yagola, Anatoly G.
机构
[1] GSP-1, 1-2 Leninskiye Gory, 119991, Moscow
来源
关键词
Ill-posed problems; error estimation; parameter identification; Black-Scholes model;
D O I
10.1515/jip-2012-0043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an inverse problem of parameter identification for a parabolic equation. The underlying practical example is the reconstruction of the unknown drift in the extended Black-Scholes option pricing model. Using a priori information about the unknown solution (i.e. its Lipschitz constant), we provide a solution to this non-linear ill-posed problem, as well as an error estimate. Other types of a priori information may be used (for example, monotonicity and/or convexity of the unknown solution).
引用
收藏
页码:327 / 337
页数:11
相关论文
共 50 条
  • [31] Validation of the Black-Scholes model as a financial call option pricing tool
    Mendez, Leonel Antonio Flores
    Rivas, Oliver David Morales
    Rodriguez, Frank Eduardo Matus
    REICE-REVISTA ELECTRONICA DE INVESTIGACION EN CIENCIAS ECONOMICAS, 2024, 12 (23): : 408 - 434
  • [32] The Black-Scholes Formulation of Option Pricing with Credit Risk
    Wang, Zhaohai
    PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON INFORMATION, BUSINESS AND EDUCATION TECHNOLOGY (ICIBET 2013), 2013, 26 : 483 - 486
  • [33] A streamlined derivation of the Black-Scholes option pricing formula
    Mamon, Rogemar S.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2005, 8 (03) : 327 - 334
  • [34] A dynamic hybrid option pricing model by genetic algorithm and Black-Scholes model
    Chen, Yi-Chang
    Chang, Shan-Lin
    Wu, Chia-Chun
    World Academy of Science, Engineering and Technology, 2010, 70 : 715 - 718
  • [35] Black-Scholes option pricing via genetic algorithms
    Grace, BK
    APPLIED ECONOMICS LETTERS, 2000, 7 (02) : 129 - 132
  • [36] Minimax Option Pricing Meets Black-Scholes in the Limit
    Abernethy, Jacob
    Frongillo, Rafael M.
    Wibisono, Andre
    STOC'12: PROCEEDINGS OF THE 2012 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2012, : 1029 - 1039
  • [37] Optimization of Capital Structure by Introduction of Black-Scholes Option Pricing Model
    Shu, Chang
    2ND INTERNATIONAL CONFERENCE ON HUMANITIES SCIENCE, MANAGEMENT AND EDUCATION TECHNOLOGY (HSMET 2017), 2017, : 170 - 174
  • [38] Numerical algorithm for pricing of discrete barrier option in a Black-Scholes model
    Farnoosh, Rahman
    Rezazadeh, Hamidreza
    Sobhani, Amirhossein
    Hassanpour, Masoud
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2018, 9 (02): : 1 - 7
  • [39] A framework for comparative analysis of statistical and machine learning methods: An application to the Black-Scholes option pricing equation
    Flores, JG
    COMPUTATIONAL FINANCE 1999, 2000, : 635 - 660
  • [40] Option pricing, Black-Scholes, and novel arbitrage possibilities
    Hyland, K.
    McKee, S.
    Waddell, C.
    IMA Journal of Mathematics Applied in Business and Industry, 1999, 10 (03): : 177 - 186