Measurement of Cerebrovascular Hemodynamics in Awake Freely Behaving Mice

被引:0
|
作者
Vigderman, Abigail
Longden, Thomas
机构
[1] University of Maryland - Baltimore, MD, Baltimore
[2] University of Maryland - Baltimore, PA, Baltimore
来源
FASEB JOURNAL | 2022年 / 36卷
关键词
D O I
10.1096/fasebj.2022.36.S1.R5327
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hemodynamic changes are frequently used as a readout for neuronal activity in functional imaging studies, and the mechanisms by which neurons communicate activity-dependent energy needs to the surrounding vasculature to evoke an increase in blood flow (functional hyperemia) are collectively termed neurovascular coupling (NVC). Various techniques are utilized to measure the hemodynamic changes resulting from NVC but none provide precise, cellular resolution data in awake and freely behaving animals. Here, we repurpose novel in-vivo imaging technology to measure brain blood flow at the single capillary level using miniature head mounted microscopes (miniscopes) and compare this to gold-standard multiphoton imaging of blood flow. We combine the use of miniscopes for data collection with automated analyses for rapid, accurate and impartial assessment of blood flow through complex vascular networks in deep brain structures. By adapting miniscopes to study hemodynamics in detail, we aim to generate high-resolution data of NVC and functional hyperemia that provides a window into the dynamics of these mechanisms in awake, freely behaving animals. © FASEB.
引用
收藏
页数:1
相关论文
共 50 条
  • [31] Enhanced cortical responsiveness during natural sleep in freely behaving mice
    Sumire Matsumoto
    Kaoru Ohyama
    Javier Díaz
    Masashi Yanagisawa
    Robert W. Greene
    Kaspar E. Vogt
    Scientific Reports, 10
  • [32] Differential optogenetic activation of the auditory midbrain in freely moving behaving mice
    Rogalla, Meike M.
    Seibert, Adina
    Sleeboom, Jana M.
    Hildebrandt, K. Jannis
    FRONTIERS IN SYSTEMS NEUROSCIENCE, 2023, 17
  • [33] Unraveling Neural Coding Mechanisms in Freely Behaving Mice Using miniScope
    Lin, Da-Ting
    NEUROPSYCHOPHARMACOLOGY, 2020, 45 (SUPPL 1) : 64 - 64
  • [34] EEG-based visual deviance detection in freely behaving mice
    Kat, Renate
    van den Berg, Berry
    Perenboom, Matthijs J. L.
    Schenke, Maarten
    van den Maagdenberg, Arn M. J. M.
    Bruining, Hilgo
    Tolner, Else A.
    Kas, Martien J. H.
    NEUROIMAGE, 2021, 245
  • [35] Dynamics of Visual Perceptual Decision-Making in Freely Behaving Mice
    You, Wen-Kai
    Mysore, Shreesh P.
    ENEURO, 2022, 9 (02)
  • [36] Enhanced cortical responsiveness during natural sleep in freely behaving mice
    Matsumoto, Sumire
    Ohyama, Kaoru
    Diaz, Javier
    Yanagisawa, Masashi
    Greene, Robert W.
    Vogt, Kaspar E.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [37] Monitoring Astrocytic Ca2+ Activity in Freely Behaving Mice
    Qin, Han
    He, Wenjing
    Yang, Chuanyan
    Li, Jin
    Jian, Tingliang
    Liang, Shanshan
    Chen, Tunan
    Feng, Hua
    Chen, Xiaowei
    Liao, Xiang
    Zhang, Kuan
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2020, 14
  • [38] A system to measure the pupil response to steady lights in freely behaving mice
    Bushnell, Mark
    Umino, Yumiko
    Solessio, Eduardo
    JOURNAL OF NEUROSCIENCE METHODS, 2016, 273 : 74 - 85
  • [39] Miniaturized device for whole cortex mesoscale imaging in freely behaving mice
    Rynes, Mathew
    Surinach, Daniel
    Laroque, Micheal
    Linn, Samantha
    Dominguez, Judith
    Ghanbari, Leila
    Kodandaramaiah, Suhasa
    NEURAL IMAGING AND SENSING 2020, 2020, 11226
  • [40] Dynamic recording of ongoing neurovascular activity in awake-behaving mice
    Takuwa, H.
    Masamoto, K.
    Obata, T.
    Kanno, I.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2009, 29 : S145 - S146