Block weighing matrices

被引:2
|
作者
Arasu, K. T. [1 ]
Severini, Simone [2 ]
Velten, Edmund [1 ]
机构
[1] Wright State Univ, Dept Math & Stat, Dayton, OH 45435 USA
[2] UCL, Dept Phys & Astron, Dept Comp Sci, London WC1E 6BT, England
来源
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES | 2013年 / 5卷 / 03期
基金
美国国家科学基金会;
关键词
Weighing matrices; Quantum computing; Hadamard matrix; Anticirculant matrix;
D O I
10.1007/s12095-013-0083-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We define a special type of weighing matrix called block weighing matrices. Motivated by questions arising in the context of optical quantum computing, we prove that infinite families of anticirculant block weighing matrices can be obtained from generic weighing matrices. The classification problem is left open.
引用
收藏
页码:201 / 207
页数:7
相关论文
共 50 条
  • [41] Competent genetic algorithms for weighing matrices
    I. S. Kotsireas
    C. Koukouvinos
    P. M. Pardalos
    D. E. Simos
    Journal of Combinatorial Optimization, 2012, 24 : 508 - 525
  • [42] On unit weighing matrices with small weight
    Best, Darcy
    Kharaghani, Hadi
    Ramp, Hugh
    DISCRETE MATHEMATICS, 2013, 313 (07) : 855 - 864
  • [43] Block H-matrices and spectrum of block matrices
    Ting-zhu H.
    Wen L.
    Applied Mathematics and Mechanics, 2002, 23 (2) : 236 - 240
  • [44] Block H-matrices and Spectrum of Block Matrices
    Gao, Huishuang
    Han, Guichun
    Sun, Yanhong
    Sun, Fei
    Ren, Yuan
    5TH ANNUAL INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND ARTIFICIAL INTELLIGENCE (ISAI2020), 2020, 1575
  • [45] BLOCK H-MATRICES AND SPECTRUM OF BLOCK MATRICES
    黄廷祝
    黎稳
    AppliedMathematicsandMechanics(EnglishEdition), 2002, (02) : 236 - 240
  • [46] Block H-matrices and spectrum of block matrices
    Huang, TZ
    Li, W
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2002, 23 (02) : 236 - 240
  • [47] Block matrices and π-triangular matrices
    不详
    OPERATOR FUNCTIONS AND LOCALIZATION OF SPECTRA, 2003, 1830 : 65 - 74
  • [48] On cocyclic weighing matrices and the regular group actions of certain paley matrices
    de Launey, W
    Stafford, RM
    DISCRETE APPLIED MATHEMATICS, 2000, 102 (1-2) : 63 - 101
  • [49] A class of mutually inequivalent circulant weighing matrices
    Millar, Goldwyn
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 54 : 3 - 11
  • [50] On a Class of Symmetric Balanced Generalized Weighing Matrices
    H. Kharaghani
    Designs, Codes and Cryptography, 2003, 30 : 139 - 149