Block weighing matrices

被引:2
|
作者
Arasu, K. T. [1 ]
Severini, Simone [2 ]
Velten, Edmund [1 ]
机构
[1] Wright State Univ, Dept Math & Stat, Dayton, OH 45435 USA
[2] UCL, Dept Phys & Astron, Dept Comp Sci, London WC1E 6BT, England
基金
美国国家科学基金会;
关键词
Weighing matrices; Quantum computing; Hadamard matrix; Anticirculant matrix;
D O I
10.1007/s12095-013-0083-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We define a special type of weighing matrix called block weighing matrices. Motivated by questions arising in the context of optical quantum computing, we prove that infinite families of anticirculant block weighing matrices can be obtained from generic weighing matrices. The classification problem is left open.
引用
收藏
页码:201 / 207
页数:7
相关论文
共 50 条
  • [1] Block weighing matrices
    K. T. Arasu
    Simone Severini
    Edmund Velten
    Cryptography and Communications, 2013, 5 : 201 - 207
  • [2] ON WEIGHING MATRICES
    KOUKOUVINOS, C
    SEBERRY, J
    UTILITAS MATHEMATICA, 1993, 43 : 101 - 127
  • [3] The construction of measurement matrices based on block weighing matrix in compressed sensing
    Zhao, Hui
    Ye, Hao
    Wang, Ruyan
    SIGNAL PROCESSING, 2016, 123 : 64 - 74
  • [4] Weighing matrices and their applications
    Koukouvinos, C.
    Seberry, J.
    Journal of Statistical Planning and Inference, 62 (01):
  • [5] On Symmetric Weighing Matrices
    Georgiou, Stelios D. D.
    Stylianou, Stella
    Alrweili, Hleil
    MATHEMATICS, 2023, 11 (09)
  • [6] Circulant weighing matrices
    Krishnasamy Thiru Arasu
    Alex J. Gutman
    Cryptography and Communications, 2010, 2 : 155 - 171
  • [7] Weighing matrices and their applications
    Koukouvinos, C
    Seberry, J
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 62 (01) : 91 - 101
  • [8] Balanced weighing matrices
    Kharaghani, Hadi
    Pender, Thomas
    Suda, Sho
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2022, 186
  • [9] Circulant weighing matrices
    Arasu, Krishnasamy Thiru
    Gutman, Alex J.
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2010, 2 (02): : 155 - 171
  • [10] Disjoint weighing matrices
    Hadi Kharaghani
    Sho Suda
    Behruz Tayfeh-Rezaie
    Journal of Algebraic Combinatorics, 2022, 55 : 27 - 41