Bifurcations of limit cycles in a Z2-equivariant planar polynomial vector field of degree 7

被引:11
|
作者
Li, JB [1 ]
Zhang, MJ
Li, SM
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Kunming Univ Sci & Technol, Ctr Nonlinear Sci Studies, Kunming 650093, Yunnan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
bifurcation; limit cycles; perturbed planar Hamiltonian systems; Hilbert's 16th problem;
D O I
10.1142/S0218127406015210
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using the bifurcation theory of planar dynamical systems and the method of detection functions, the bifurcations of limit cycles in a Z(2)-equivariant planar perturbed Hamiltonian polynomial vector fields of degree 7 are studied. An example of a special Z(2)-equivariant vector field having 50 limit cycles with a configuration of compound eyes are given.
引用
收藏
页码:925 / 943
页数:19
相关论文
共 50 条
  • [41] Equivalence on bifurcations of multiple limit cycles of planar vector fields of degree 5 with different perturbation terms
    Li, Jing
    Tian, Yun
    Zhang, Wei
    Miao, Sufen
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 21 - 23
  • [42] AN IMPROVED LOWER BOUND ON THE NUMBER OF LIMIT CYCLES BIFURCATING FROM A HAMILTONIAN PLANAR VECTOR FIELD OF DEGREE 7
    Johnson, Tomas
    Tucker, Warwick
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (05): : 1451 - 1458
  • [43] On the limit cycles of a quintic planar vector field
    Yu-hai Wu
    Li-xin Tian
    Mao-an Han
    [J]. Science in China Series A: Mathematics, 2007, 50 : 925 - 940
  • [44] On the limit cycles of a quintic planar vector field
    Wu, Yu-hai
    Tian, Li-xin
    Han, Mao-an
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (07): : 925 - 940
  • [45] On the limit cycles of a quintic planar vector field
    Yu-hai WU~(1+) Li-xin TIAN~1 Mao-an HAN~2 1 Department of Mathematics
    2 Department of Mathematics
    [J]. Science China Mathematics, 2007, (07) : 925 - 940
  • [46] On the number of limit cycles of a Z4-equivariant quintic polynomial system
    Xu, Weijiao
    Han, Maoan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (10) : 3022 - 3034
  • [47] Realization problems for limit cycles of planar polynomial vector fields
    Margalef-Bentabol, Juan
    Peralta-Salas, Daniel
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (04) : 3844 - 3859
  • [48] Singular points and limit cycles of planar polynomial vector fields
    Itenberg, I
    Shustin, E
    [J]. DUKE MATHEMATICAL JOURNAL, 2000, 102 (01) : 1 - 37
  • [49] Weak Bi-Center and Critical Period Bifurcations of a Z2-Equivariant Quintic System
    Wu, Yusen
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (08):
  • [50] Nilpotent Bicenters in Continuous Piecewise Z2-Equivariant Cubic Polynomial Hamiltonian Vector Fields: Cusp-Cusp Type
    Chen, Ting
    Llibre, Jaume
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (12):