Minimal controllability of conjunctive Boolean networks is NP-complete

被引:37
|
作者
Weiss, Eyal [1 ]
Margaliot, Michael [1 ,2 ]
Even, Guy [1 ]
机构
[1] Tel Aviv Univ, Dept EE Syst, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Sagol Sch Neurosci, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
MODELS;
D O I
10.1016/j.automatica.2018.02.014
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a conjunctive Boolean network (CBN) with n state-variables, we consider the problem of finding a minimal set of state-variables to directly affect with an input so that the resulting conjunctive Boolean control network (CBCN) is controllable. We give a necessary and sufficient condition for controllability of a CBCN; an O(n(2))-time algorithm for testing controllability; and prove that nonetheless the minimal controllability problem for CBNs is NP-hard. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:56 / 62
页数:7
相关论文
共 50 条
  • [21] An NP-complete fragment of LTL
    Muscholl, A
    Walukiewicz, I
    DEVELOPMENTS IN LANGUAGE THEORY, PROCEEDINGS, 2004, 3340 : 334 - 344
  • [22] NP-COMPLETE SCHEDULING PROBLEMS
    ULLMAN, JD
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1975, 10 (03) : 384 - 393
  • [23] DECIDING FRATTINI IS NP-COMPLETE
    RYTER, CH
    SCHMID, J
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1994, 11 (03): : 257 - 279
  • [24] A survey of NP-complete puzzles
    Kendall, Grahain
    Parkes, Andrew
    Spoerer, Kristian
    ICGA JOURNAL, 2008, 31 (01) : 13 - 34
  • [25] Properties of NP-complete sets
    Glasser, C
    Pavan, A
    Selman, AL
    Sengupta, S
    19TH IEEE ANNUAL CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2004, : 184 - 197
  • [26] CROSSING NUMBER IS NP-COMPLETE
    GAREY, MR
    JOHNSON, DS
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1983, 4 (03): : 312 - 316
  • [27] Entropy for NP-complete problems
    Levchenkov, V.S.
    Doklady Akademii Nauk, 2001, 376 (02) : 175 - 178
  • [28] Chained Block is NP-Complete
    Iwamoto, Chuzo
    Ide, Tatsuya
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107D (03) : 320 - 324
  • [29] The entropy of NP-complete problems
    Levchenkov, VS
    DOKLADY MATHEMATICS, 2001, 63 (01) : 130 - 132
  • [30] SPLITTING NUMBER is NP-complete
    Faria, L
    de Figueiredo, CMH
    Mendonça, CFX
    DISCRETE APPLIED MATHEMATICS, 2001, 108 (1-2) : 65 - 83