Terahertz image super-resolution based on a deep convolutional neural network

被引:58
|
作者
Long, Zhenyu [1 ]
Wang, Tianyi [1 ]
You, Chengwu [1 ]
Yang, Zhengang [1 ]
Wang, Kejia [1 ]
Liu, Jinsong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
30;
D O I
10.1364/AO.58.002731
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose an effective and robust method for terahertz (THz) image super-resolution based on a deep convolutional neural network (CNN). A deep CNN model is designed. It learns an end-to-end mapping between the low- and high-resolution images. Blur kernels with multiple width and noise with multiple levels are taken into the training set so that the network can handle THz images very well. Quantitative comparison of the proposed method and other super-resolution methods on the synthetic THz images indicates that the proposed method performs better than other methods in accuracy and visual improvements. Experimental results on real THz images show that the proposed method significantly improves the quality of THz images with increased resolution and decreased noise, which proves the practicability and exactitude of the proposed method. (C) 2019 Optical Society of America
引用
下载
收藏
页码:2731 / 2735
页数:5
相关论文
共 50 条
  • [31] Image super-resolution using a dilated convolutional neural network
    Lin, Guimin
    Wu, Qingxiang
    Qiu, Lida
    Huang, Xixian
    NEUROCOMPUTING, 2018, 275 : 1219 - 1230
  • [32] ITERATIVE CONVOLUTIONAL NEURAL NETWORK FOR NOISY IMAGE SUPER-RESOLUTION
    Bao, Wenbo
    Zhang, Xiaoyun
    Yan, Shangpeng
    Gao, Zhiyong
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4038 - 4042
  • [33] Image super-resolution with an enhanced group convolutional neural network
    Tian, Chunwei
    Yuan, Yixuan
    Zhang, Shichao
    Lin, Chia-Wen
    Zuo, Wangmeng
    Zhang, David
    NEURAL NETWORKS, 2022, 153 : 373 - 385
  • [34] Image Super-Resolution Using Residual Convolutional Neural Network
    Lee, Pei-Ying
    Tseng, Chien-Cheng
    2019 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2019,
  • [35] Image super-resolution reconstruction based on residual connection convolutional neural network
    Guo J.-C.
    Wu J.
    Guo C.-L.
    Zhu M.-H.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2019, 49 (05): : 1726 - 1734
  • [36] Image Super-Resolution Based on Dense Convolutional Network
    Li, Jie
    Zhou, Yue
    PATTERN RECOGNITION AND COMPUTER VISION, PT II, 2018, 11257 : 134 - 145
  • [37] Incorporating image priors with deep convolutional neural networks for image super-resolution
    Liang, Yudong
    Wang, Jinjun
    Zhou, Sanping
    Gong, Yihong
    Zheng, Nanning
    NEUROCOMPUTING, 2016, 194 : 340 - 347
  • [38] Deep primitive convolutional neural network for image super resolution
    Greeshma, M. S. M.
    Bindu, V. R. V.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (1) : 253 - 278
  • [39] Deep primitive convolutional neural network for image super resolution
    Greeshma M. S.
    Bindu V. R.
    Multimedia Tools and Applications, 2024, 83 : 253 - 278
  • [40] IMAGE DEBLURRING AND SUPER-RESOLUTION USING DEEP CONVOLUTIONAL NEURAL NETWORKS
    Albluwi, Fatma
    Krylov, Vladimir A.
    Dahyot, Rozenn
    2018 IEEE 28TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2018,