Universal Precise Growth of 2D Transition-Metal Dichalcogenides in Vertical Direction

被引:18
|
作者
Pan, Baojun [1 ]
Zhang, Kenan [2 ,3 ,4 ]
Ding, Changchun [3 ]
Wu, Zhen [3 ]
Fan, Qunchao [3 ]
Luo, Tingyan [1 ]
Zhang, Lijie [1 ]
Zou, Chao [1 ]
Huang, Shaoming [2 ]
机构
[1] Wenzhou Univ, Key Lab Carbon Mat Zhejiang Prov, Inst New Mat & Ind Technol, Coll Chem & Mat Engn, Wenzhou 325035, Peoples R China
[2] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Peoples R China
[3] Xihua Univ, Sch Sci, Key Lab High Performance Sci Computat, Chengdu 610039, Peoples R China
[4] Chinese Acad Sci, State Key Lab Infrared Phys, Shanghai 200083, Peoples R China
基金
中国国家自然科学基金;
关键词
2D materials; transition-metal dichalcogenides; metal/chalcogenide ratio; layer number controlling; chemical vapor deposition; CHEMICAL-VAPOR-DEPOSITION; MONO; VAN; HETEROSTRUCTURES; MONOLAYERS; EVOLUTION; SAPPHIRE; LAYERS;
D O I
10.1021/acsami.0c08335
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Two-dimensional transition-metal dichalcogenides (TMDs) have been one of the hottest focus of materials due to the most beneficial electronic and optoelectronic properties. Up to now, one of the big challenges is the synthesis of large-area layernumber-controlled single-crystal films. However, the poor understanding of the growth mechanism seriously hampers the progress of the scalable production of TMDs with precisely tunable thickness at an atomic scale. Here, the growth mechanisms in the vertical direction were systemically studied based on the density functional theory (DFT) calculation and an advanced chemical vapor deposition (CVD) growth. As a result, the U-type relation of the TMD layer number to the ratio of metal/chalcogenide is confirmed by the capability of ultrafine tuning of the experimental conditions in the CVD growth. In addition, high-quality uniform monolayer, bilayer, trilayer, and multilayer TMDs in a large area (8 cm(2)) were efficiently synthesized by applying this modified CVD. Although bilayer TMDs can be obtained at both high and low ratios of metal/ chalcogenide based on the suggested mechanism, they demonstrate significantly different optical and electronic transport properties. The modified CVD strategy and the proposed mechanism should be helpful for synthesizing and large-area thickness-controlled TMDs and understanding their growth mechanism and could be used in integrated electronics and optoelectronics.
引用
收藏
页码:35337 / 35344
页数:8
相关论文
共 50 条
  • [31] Universal Fermi-Level Pinning in Transition-Metal Dichalcogenides
    Sotthewes, Kai
    van Bremen, Rik
    Dollekamp, Edwin
    Boulogne, Tim
    Nowakowski, Krystian
    Kas, Daan
    Zandvliet, Harold J. W.
    Bampoulis, Pantelis
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (09): : 5411 - 5420
  • [32] Quantum simulation of a heterojunction vertical tunnel FET based on 2D transition metal dichalcogenides
    Cao, Jiang
    Cresti, Alessandro
    Esseni, David
    Pala, Marco
    SOLID-STATE ELECTRONICS, 2016, 116 : 1 - 7
  • [33] Controlled synthesis of 2D transition metal dichalcogenides: from vertical to planar MoS2
    Zhang, Fu
    Momeni, Kasra
    Abu AlSaud, Mohammed
    Azizi, Amin
    Hainey, Mel F., Jr.
    Redwing, Joan M.
    Chen, Long-Qing
    Alem, Nasim
    2D MATERIALS, 2017, 4 (02):
  • [34] Recent Progress in CVD Growth of 2D Transition Metal Dichalcogenides and Related Heterostructures
    Zhang, Yu
    Yao, Yuyu
    Sendeku, Marshet Getaye
    Yin, Lei
    Zhan, Xueying
    Wang, Feng
    Wang, Zhenxing
    He, Jun
    ADVANCED MATERIALS, 2019, 31 (41)
  • [35] 2D transition metal dichalcogenides for neuromorphic vision system
    Zhou, Kaoqi
    Jiang, Jie
    Ding, Liming
    JOURNAL OF SEMICONDUCTORS, 2021, 42 (09)
  • [36] 2D transition metal dichalcogenides for neuromorphic vision system
    Kaoqi Zhou
    Jie Jiang
    Liming Ding
    Journal of Semiconductors, 2021, (09) : 11 - 13
  • [37] 2D Janus Transition Metal Dichalcogenides: Properties and Applications
    Tang, Xiao
    Kou, Liangzhi
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (04):
  • [38] 2D nanomaterials: beyond graphene and transition metal dichalcogenides
    Zhang, Hua
    Cheng, Hui-Ming
    Ye, Peide
    CHEMICAL SOCIETY REVIEWS, 2018, 47 (16) : 6009 - 6012
  • [39] The Defects Genome of 2D Janus Transition Metal Dichalcogenides
    Sayyad, Mohammed
    Kopaczek, Jan
    Gilardoni, Carmem M.
    Chen, Weiru
    Xiong, Yihuang
    Yang, Shize
    Watanabe, Kenji
    Taniguchi, Takashi
    Kudrawiec, Robert
    Hautier, Geoffroy
    Atatüre, Mete
    Tongay, Sefaattin
    arXiv,
  • [40] 2D transition metal dichalcogenides for neuromorphic vision system
    Kaoqi Zhou
    Jie Jiang
    Liming Ding
    Journal of Semiconductors, 2021, 42 (09) : 11 - 13