Shimura lifts of half-integral weight modular forms arising from theta functions

被引:5
|
作者
Hansen, David [1 ]
Naqvi, Yusra [2 ]
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
[2] Swarthmore Coll, Dept Math & Stat, Swarthmore, PA 19081 USA
来源
RAMANUJAN JOURNAL | 2008年 / 17卷 / 03期
关键词
Shimura correspondence; Theta function; 11F03; 11F32; 11F37;
D O I
10.1007/s11139-007-9020-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1973, Shimura (Ann. Math. (2) 97:440-481, 1973) introduced a family of correspondences between modular forms of half-integral weight and modular forms of even integral weight. Earlier, in unpublished work, Selberg explicitly computed a simple case of this correspondence pertaining to those half-integral weight forms which are products of Jacobi's theta function and level one Hecke eigenforms. Cipra (J. Number Theory 32(1):58-64, 1989) generalized Selberg's work to cover the Shimura lifts where the Jacobi theta function may be replaced by theta functions attached to Dirichlet characters of prime power modulus, and where the level one Hecke eigenforms are replaced by more generic newforms. Here we generalize Cipra's results further to cover theta functions of arbitrary Dirichlet characters multiplied by Hecke eigenforms.
引用
收藏
页码:343 / 354
页数:12
相关论文
共 50 条
  • [21] FAST COMPUTATION OF HALF-INTEGRAL WEIGHT MODULAR FORMS
    Inam, Ilker
    Wiese, Gabor
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (04) : 1395 - 1401
  • [22] DIAGONALISING MODULAR-FORMS OF HALF-INTEGRAL WEIGHT
    MANICKAM, M
    RAMAKRISHNAN, B
    VASUDEVAN, TC
    JOURNAL OF NUMBER THEORY, 1992, 40 (01) : 32 - 37
  • [23] A canonical subspace of modular forms of half-integral weight
    Sanoli Gun
    M. Manickam
    B. Ramakrishnan
    Mathematische Annalen, 2010, 347 : 899 - 916
  • [24] ON THE FOURIER COEFFICIENTS OF MODULAR FORMS OF HALF-INTEGRAL WEIGHT
    Choie, Young Ju
    Kohnen, Winfried
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (08) : 1879 - 1883
  • [25] Signs of Fourier coefficients of half-integral weight modular forms
    Lester, Stephen
    Radziwill, Maksym
    MATHEMATISCHE ANNALEN, 2021, 379 (3-4) : 1553 - 1604
  • [26] FOURIER COEFFICIENTS OF MODULAR-FORMS OF HALF-INTEGRAL WEIGHT
    IWANIEC, H
    INVENTIONES MATHEMATICAE, 1987, 87 (02) : 385 - 401
  • [27] Half-integral weight Eichler integrals and quantum modular forms
    Bringmann, Kathrin
    Rolen, Larry
    JOURNAL OF NUMBER THEORY, 2016, 161 : 240 - 254
  • [28] A note on the Fourier coefficients of half-integral weight modular forms
    Narasimha Kumar
    Soma Purkait
    Archiv der Mathematik, 2014, 102 : 369 - 378
  • [29] A note on the Fourier coefficients of half-integral weight modular forms
    Kumar, Narasimha
    Purkait, Soma
    ARCHIV DER MATHEMATIK, 2014, 102 (04) : 369 - 378
  • [30] On the algebraicity of coefficients of half-integral weight mock modular forms
    Choi, SoYoung
    Kim, Chang Heon
    OPEN MATHEMATICS, 2018, 16 : 1335 - 1343