Demo: On-The-Fly Deployment of Deep Neural Networks on Heterogeneous Hardware in a Low-Cost Smart Camera

被引:0
|
作者
Velasco-Montero, D. [1 ]
Fernandez-Berni, J. [1 ]
Carmona-Galan, R. [1 ]
Rodriguez-Vazquez, A. [1 ]
机构
[1] Univ Seville, CSIC, Inst Microelect Sevilla IMSE CNM, Seville, Spain
基金
欧盟地平线“2020”;
关键词
Smart camera; embedded vision system; visual inference; deep neural networks; heterogeneous hardware;
D O I
10.1145/3243394.3243705
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This demo showcases a low-cost smart camera where different hardware configurations can be selected to perform image recognition on deep neural networks. Both the hardware configuration and the network model can be changed any time on the fly. Up to 24 hardware-model combinations are possible, enabling dynamic reconfiguration according to prescribed application requirements.
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Low-cost, high-efficiency hardware implementation of smart traffic light system
    Thien Truong Nguyen-Ly
    Linh Tran
    Huynh, Thinh, V
    2019 INTERNATIONAL SYMPOSIUM ON ELECTRICAL AND ELECTRONICS ENGINEERING (ISEE 2019), 2019, : 28 - 32
  • [42] LeanConvNets: Low-Cost Yet Effective Convolutional Neural Networks
    Ephrath, Jonathan
    Eliasof, Moshe
    Ruthotto, Lars
    Haber, Eldad
    Treister, Eran
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2020, 14 (04) : 894 - 904
  • [43] PresTo: A liquid-filled camera for low-cost imaging in the deep sea
    Motsenbocker, Breanna E.
    Noyes, Timothy J.
    Runyan, Alexandra T.
    Shomberg, Russell
    Phillips, Brennan T.
    DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2024, 206
  • [44] Lime: Low-Cost and Incremental Learning for Dynamic Heterogeneous Information Networks
    Peng, Hao
    Yang, Renyu
    Wang, Zheng
    Li, Jianxin
    He, Lifang
    Yu, Philip S.
    Zomaya, Albert Y.
    Ranjan, Rajiv
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (03) : 628 - 642
  • [45] Hardware-Assisted, Low-Cost Video Transcoding Solution in Wireless Networks
    Yoon, Jongwon
    Banerjee, Suman
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2020, 19 (03) : 581 - 597
  • [46] Using Delay Tolerant Networks as a Backbone for Low-cost Smart Cities
    Madamori, Oluwashina
    Max-Onakpoya, Esther
    Grant, Christan
    Baker, Corey E.
    2019 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING (SMARTCOMP 2019), 2019, : 468 - 471
  • [47] Smart at what cost? Characterising Mobile Deep Neural Networks in the wild
    Almeida, Mario
    Laskaridis, Stefanos
    Mehrotra, Abhinav
    Dudziak, Lukasz
    Leontiadis, Ilias
    Lane, Nicholas D.
    PROCEEDINGS OF THE 2021 ACM INTERNET MEASUREMENT CONFERENCE, IMC 2021, 2021, : 658 - 672
  • [48] Integration of a low-cost camera system for smart agriculture aboard tethered balloons and drones
    Toson, Federico
    AEROSPACE SCIENCE AND ENGINEERING, IV AEROSPACE PHD-DAYS 2024, 2024, 42 : 98 - 103
  • [49] Estimating temperatures with low-cost infrared cameras using physically-constrained deep neural networks
    Oz, Navot
    Sochen, Nir
    Mendlovic, David
    Klapp, Iftach
    OPTICS EXPRESS, 2024, 32 (17): : 30565 - 30582
  • [50] Low power & mobile hardware accelerators for deep convolutional neural networks
    Scanlan, Anthony G.
    INTEGRATION-THE VLSI JOURNAL, 2019, 65 : 110 - 127