Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings

被引:155
|
作者
Zhang, Xiangbo [1 ]
Lei, Lei [1 ]
Lai, Jinsheng [1 ]
Zhao, Haiming [1 ]
Song, Weibin [1 ]
机构
[1] China Agr Univ, Beijing Key Lab Crop Genet Improvement, Key Lab Crop Heterosis & Utilizat,Ministry of Edu, State Key Lab Agrobiotechnol,Natl Maize Improveme, 2 Yuanmingyuan West Rd, Beijing 100193, Peoples R China
来源
BMC PLANT BIOLOGY | 2018年 / 18卷
基金
中国国家自然科学基金;
关键词
Zea mays; Seedling; Drought stress; Water recovery; Photosynthetic efficiency; Transcription factor; FUNCTIONAL-ANALYSIS; ABIOTIC STRESS; PLANT-GROWTH; TOLERANCE; MECHANISMS; OVEREXPRESSION; IDENTIFICATION; ACCUMULATION; IMPROVEMENT; TRANSCRIPT;
D O I
10.1186/s12870-018-1281-x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Drought is one of the major factors limiting global maize production. Exposure to long-term drought conditions inhibits growth and leads to yield losses. Although several drought-responsive genes have been identified and functionally analyzed, the mechanisms underlying responses to drought and water recovery treatments have not been fully elucidated. To characterize how maize seedling respond to drought stress at the transcriptional level, we analyzed physiological responses and differentially expressed genes (DEGs) in the inbred line B73 under water deficit and recovery conditions. Results: The data for relative leaf water content, leaf size, and photosynthesis-related parameters indicated that drought stress significantly repressed maize seedling growth. Further RNA sequencing analysis revealed that 6107 DEGs were responsive to drought stress and water recovery, with more down-regulated than up-regulated genes. Among the DEGs, the photosynthesis-and hormone-related genes were enriched in responses to drought stress and re-watering. Additionally, transcription factor genes from 37 families were differentially expressed among the three analyzed time-points. Gene ontology enrichment analyses of the DEGs indicated that 50 GO terms, including those related to photosynthesis, carbohydrate metabolism, oxidoreductase activities, nutrient metabolism and other drought-responsive pathways, were over-represented in the drought-treated seedlings. The content of gibberellin in drought treatment seedlings was decreased compared to that of control seedlings, while abscisic acid showed accumulated in the drought treated plants. The deep analysis of DEGs related to cell wall development indicated that these genes were prone to be down-regulated at drought treatment stage. Conclusions: Many genes that are differentially expressed in responses to drought stress and water recovery conditions affect photosynthetic systems and hormone biosynthesis. The identified DEGs, especially those encoding transcription factors, represent potential targets for developing drought-tolerant maize lines.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Drought stimulation by hypocotyl exposure altered physiological responses to subsequent drought stress in peanut seedlings
    Feifei Qin
    Hui-lian Xu
    Dunwei Ci
    Acta Physiologiae Plantarum, 2017, 39
  • [22] Drought stimulation by hypocotyl exposure altered physiological responses to subsequent drought stress in peanut seedlings
    Qin, Feifei
    Xu, Hui-lian
    Ci, Dunwei
    ACTA PHYSIOLOGIAE PLANTARUM, 2017, 39 (07)
  • [23] Effects of Exogenous Abscisic Acid on the Physiological and Biochemical Responses of Camellia oleifera Seedlings under Drought Stress
    Yang, Dayu
    Chen, Yongzhong
    Wang, Rui
    He, Yimin
    Ma, Xiaofan
    Shen, Jiancai
    He, Zhilong
    Lai, Hanggui
    PLANTS-BASEL, 2024, 13 (02):
  • [24] Maize (Zea mays L.) physiological responses to drought and rewatering, and the associations with water stress degree
    Cai, Fu
    Zhang, Yushu
    Mi, Na
    Ming, Huiqing
    Zhang, Shujie
    Zhang, Hui
    Zhao, Xianli
    AGRICULTURAL WATER MANAGEMENT, 2020, 241
  • [25] Physiological and transcriptomic insights into adaptive responses of Seriphidium transiliense seedlings to drought stress
    Liu, Xiqiang
    Chen, Aiping
    Wang, Yuxiang
    Jin, Guili
    Zhang, Yanhui
    Gu, Lili
    Li, Chenjian
    Shao, Xinqing
    Wang, Kun
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2022, 194
  • [26] Morphological and Physiological Responses of Melia azedarach Seedlings of Different Provenances to Drought Stress
    Han, Chao
    Chen, Junna
    Liu, Zemao
    Chen, Hong
    Yu, Fangyuan
    Yu, Wanwen
    AGRONOMY-BASEL, 2022, 12 (06):
  • [27] Potassium Application Positively Modulates Physiological Responses of Cocoa Seedlings to Drought Stress
    Anokye, Esther
    Lowor, Samuel T.
    Dogbatse, Jerome A.
    Padi, Francis K.
    AGRONOMY-BASEL, 2021, 11 (03):
  • [28] Physiological and FtCHS Gene Expression Responses to PEG-Simulated Drought and Cadmium Stresses in Tartary Buckwheat Seedlings
    Li, Ling
    Yan, Xuyu
    Li, Juan
    Tian, Yashan
    JOURNAL OF PLANT GROWTH REGULATION, 2022, 41 (08) : 3518 - 3529
  • [29] Physiological and FtCHS Gene Expression Responses to PEG-Simulated Drought and Cadmium Stresses in Tartary Buckwheat Seedlings
    Ling Li
    Xuyu Yan
    Juan Li
    Yashan Tian
    Journal of Plant Growth Regulation, 2022, 41 : 3518 - 3529
  • [30] Screening and Physiological Responses of Maize Inbred Lines to Drought Stress in South China
    Zhang, Zhiqin
    Xie, Xiaodong
    Naseer, Muhammad Asad
    Zhou, Haiyu
    Cheng, Weidong
    Xie, Hexia
    Qin, Lanqiu
    Yang, Xiang
    Jiang, Yufeng
    Zhou, Xunbo
    SUSTAINABILITY, 2024, 16 (17)