The Hamilton-Jacobi partial differential equation and the three representations of traffic flow

被引:69
|
作者
Laval, Jorge A. [1 ]
Leclercq, Ludovic [2 ]
机构
[1] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
[2] Univ Lyon, ENTPE, IFSTTAR, Lab Ingn Circulat Transport LICIT, Lyon, France
基金
美国国家科学基金会;
关键词
Hamilton-Jacobi partial differential equation; Stochastic traffic flow; Kinematic wave model; CAR-FOLLOWING THEORY; KINEMATIC WAVES; VARIATIONAL FORMULATION; BOUNDARY-CONDITIONS; HIGHWAY; MODEL;
D O I
10.1016/j.trb.2013.02.008
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper applies the theory of Hamilton-Jacobi partial differential equations to the case of first-order traffic flow models. The traffic flow surface is analyzed with respect to the three 2-dimensional coordinate systems arising in the space of vehicle number, time and distance. In each case, the solution to the initial and boundary value problems are presented. Explicit solution methods and examples are shown for the triangular flow-density diagram case. This unveils new models and shows how a number of existing models are cast as special cases. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:17 / 30
页数:14
相关论文
共 50 条
  • [21] The Hamilton-Jacobi equation on Lie affgebroids
    Marrero, J. C.
    Sosa, D.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (03) : 605 - 622
  • [22] Lagrangian submanifolds and the Hamilton-Jacobi equation
    Barbero-Linan, Maria
    de Leon, Manuel
    Martin de Diego, David
    MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4): : 269 - 290
  • [23] RANDOM WALK AND THE HAMILTON-JACOBI EQUATION
    EVERETT, CJ
    ULAM, SM
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 56 (01) : 63 - 64
  • [24] KINEMATIC REDUCTION AND THE HAMILTON-JACOBI EQUATION
    Barbero-Linan, Maria
    de Leon, Manuel
    Martin de Diego, David
    Marrero, Juan C.
    Munoz-Lecanda, Miguel C.
    JOURNAL OF GEOMETRIC MECHANICS, 2012, 4 (03): : 207 - 237
  • [25] Turnpike theorem and the Hamilton-Jacobi equation
    Rapaport, A
    Cartigny, P
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (12) : 1091 - 1094
  • [26] PRACTICAL USE OF THE HAMILTON-JACOBI EQUATION
    CHODOS, A
    SOMMERFIELD, CM
    JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (02) : 271 - 275
  • [27] HAMILTON-JACOBI EQUATION FOR DESCRIPTOR SYSTEMS
    XU, H
    MIZUKAMI, K
    SYSTEMS & CONTROL LETTERS, 1993, 21 (04) : 321 - 327
  • [28] HYDRODYNAMIC ANALOGY TO HAMILTON-JACOBI EQUATION
    WEINER, JH
    AMERICAN JOURNAL OF PHYSICS, 1974, 42 (11) : 1026 - 1028
  • [29] QUANTIZATION AND CLASSICAL HAMILTON-JACOBI EQUATION
    MOTZ, L
    PHYSICAL REVIEW, 1962, 126 (01): : 378 - &
  • [30] THE HAMILTON-JACOBI EQUATION FOR COULOMB SCATTERING
    ROWE, EGP
    AMERICAN JOURNAL OF PHYSICS, 1985, 53 (10) : 997 - 1000