Computational classification of mitochondrial shapes reflects stress and redox state

被引:160
|
作者
Ahmad, T. [1 ]
Aggarwal, K. [1 ]
Pattnaik, B. [1 ]
Mukherjee, S. [1 ]
Sethi, T. [1 ]
Tiwari, B. K. [2 ]
Kumar, M. [3 ]
Micheal, A. [3 ]
Mabalirajan, U. [1 ]
Ghosh, B. [1 ]
Roy, S. Sinha [1 ]
Agrawal, A. [1 ]
机构
[1] CSIR Inst Genom & Integrat Biol, Ctr Excellence Asthma & Lung Dis, Delhi 110007, India
[2] CSIR Inst Genom & Integrat Biol, Dept Allergy & Infect Dis, Delhi 110007, India
[3] Univ Delhi, Biotech Ctr, Cent Instrumentat Facil, Delhi 110007, India
来源
CELL DEATH & DISEASE | 2013年 / 4卷
关键词
mitochondrial dynamics; ROS; calcium; shape classification; DYNAMICS; FISSION; FUSION; CONTRIBUTES; DYSFUNCTION; MOVEMENT; DIVISION;
D O I
10.1038/cddis.2012.213
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Dynamic variations in mitochondrial shape have been related to function. However, tools to automatically classify and enumerate mitochondrial shapes are lacking, as are systematic studies exploring the relationship of such shapes to mitochondrial stress. Here we show that during increased generation of mitochondrial reactive oxygen species (mtROS), mitochondria change their shape from tubular to donut or blob forms, which can be computationally quantified. Imaging of cells treated with rotenone or antimycin, showed time and dose-dependent conversion of tubular forms to donut-shaped mitochondria followed by appearance of blob forms. Time-lapse images showed reversible transitions from tubular to donut shapes and unidirectional transitions between donut and blob shapes. Blobs were the predominant sources of mtROS and appeared to be related to mitochondrial-calcium influx. Mitochondrial shape change could be prevented by either pretreatment with antioxidants like N-acetyl cysteine or inhibition of the mitochondrial calcium uniporter. This work represents a novel approach towards relating mitochondrial shape to function, through integration of cellular markers and a novel shape classification algorithm. Cell Death and Disease (2013) 4, e461; doi:10.1038/cddis.2012.213; published online 17 January 2013
引用
收藏
页码:e461 / e461
页数:10
相关论文
共 50 条
  • [31] Oxidative stress and Redox regulation: The dual role of mitochondrial Ros
    Simard, G.
    FUNDAMENTAL & CLINICAL PHARMACOLOGY, 2013, 27 : 16 - 16
  • [32] Proline biosynthesis is a vent for TGFβ-induced mitochondrial redox stress
    Schworer, Simon
    Berisa, Mirela
    Violante, Sara
    Qin, Weige
    Zhu, Jiajun
    Hendrickson, Ronald C.
    Cross, Justin R.
    Thompson, Craig B.
    EMBO JOURNAL, 2020, 39 (08):
  • [33] Mitochondrial stress and redox failure in steroid-associated osteonecrosis
    Tsuchiya, Masanobu
    Ichiseki, Toru
    Ueda, Shusuke
    Ueda, Yoshimichi
    Shimazaki, Miyako
    Kaneuji, Ayumi
    Kawahara, Norio
    INTERNATIONAL JOURNAL OF MEDICAL SCIENCES, 2018, 15 (03): : 205 - 209
  • [34] The mitochondrial calcium uniporter (MCU) activates mitochondrial respiration and enhances mobility by regulating mitochondrial redox state
    Weiser, Anna
    Hermant, Aurelle
    Bermont, Flavien
    Sizzano, Federico
    Karaz, Sonia
    Alvarez-Illera, Pilar
    Santo-Domingo, Jaime
    Sorrentino, Vincenzo
    Feige, Jerome N.
    De Marchi, Umberto
    REDOX BIOLOGY, 2023, 64
  • [35] Targeting Glioblastoma via Selective Alteration of Mitochondrial Redox State
    Sumiyoshi, Akira
    Shibata, Sayaka
    Zhelev, Zhivko
    Miller, Thomas
    Lazarova, Dessislava
    Aoki, Ichio
    Obata, Takayuki
    Higashi, Tatsuya
    Bakalova, Rumiana
    CANCERS, 2022, 14 (03)
  • [36] Zinc and calcium modulate mitochondrial redox state and morphofunctional integrity
    Sharaf, Mahmoud S.
    Van den Heuvel, Michael R.
    Stevens, Don
    Kamunde, Collins
    FREE RADICAL BIOLOGY AND MEDICINE, 2015, 84 : 142 - 153
  • [37] Selective Disruption of Mitochondrial Thiol Redox State in Cells and In Vivo
    Booty, Lee M.
    Gawel, Justyna M.
    Cvetko, Filip
    Caldwell, Stuart T.
    Hall, Andrew R.
    Mulvey, John F.
    James, Andrew M.
    Hinchy, Elizabeth C.
    Prime, Tracy A.
    Arndt, Sabine
    Beninca, Cristiane
    Bright, Thomas P.
    Clatworthy, Menna R.
    Ferdinand, John R.
    Prag, Hiran A.
    Logan, Angela
    Prudent, Julien
    Krieg, Thomas
    Hartley, Richard C.
    Murphy, Michael P.
    CELL CHEMICAL BIOLOGY, 2019, 26 (03): : 449 - +
  • [38] Mitochondrial NAD+/NADH Redox State and Diabetic Cardiomyopathy
    Berthiaume, Jessica M.
    Kurdys, Jacob G.
    Muntean, Danina M.
    Rosca, Mariana G.
    ANTIOXIDANTS & REDOX SIGNALING, 2019, 30 (03) : 375 - 398
  • [39] Investigating mitochondrial redox state using NADH and NADPH autofluorescence
    Blacker, Thomas S.
    Duchen, Michael R.
    FREE RADICAL BIOLOGY AND MEDICINE, 2016, 100 : 53 - 65
  • [40] Mitochondrial NADH redox state, monitoring discovery and deployment in tissue
    Chance, B
    IMAGING IN BIOLOGICAL RESEARCH, PT A, 2004, 385 : 361 - 370