EXISTENCE OF AXIALLY SYMMETRIC SOLUTIONS TO THE VLASOV-POISSON SYSTEM DEPENDING ON JACOBI'S INTEGRAL

被引:5
|
作者
Schulze, Achim [1 ]
机构
[1] Univ Bayreuth, Math Inst, D-95440 Bayreuth, Germany
关键词
Vlasov-Poisson system; galactic dynamics; stationary solutions;
D O I
10.4310/CMS.2008.v6.n3.a9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of axially symmetric solutions to the Vlasov-Poisson system in a rotating setting for sufficiently small angular velocity. The constructed steady states depend on Jacobi's integral and the proof relies on an implicit function theorem for operators.
引用
收藏
页码:711 / 727
页数:17
相关论文
共 50 条
  • [31] Oscillating solutions of the Vlasov-Poisson system A numerical investigation
    Ramming, Tobias
    Rein, Gerhard
    PHYSICA D-NONLINEAR PHENOMENA, 2018, 365 : 72 - 79
  • [32] Moment Propagation for Weak Solutions to the Vlasov-Poisson System
    Pallard, Christophe
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (07) : 1273 - 1285
  • [33] ON GLOBAL SOLUTIONS TO THE VLASOV-POISSON SYSTEM WITH RADIATION DAMPING
    Xiao, Meixia
    Zhang, Xianwen
    KINETIC AND RELATED MODELS, 2018, 11 (05) : 1183 - 1209
  • [34] Periodic solutions of the Vlasov-Poisson system with boundary conditions
    Bostan, M
    Poupaud, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (12): : 1333 - 1336
  • [35] LAGRANGIAN SOLUTIONS TO THE VLASOV-POISSON SYSTEM WITH A POINT CHARGE
    Crippa, Gianluca
    Ligabue, Silvia
    Saffirio, Chiara
    KINETIC AND RELATED MODELS, 2018, 11 (06) : 1277 - 1299
  • [36] SINGULARITIES OF STATIONARY SOLUTIONS TO THE VLASOV-POISSON SYSTEM IN A POLYGON
    Karami, Fahd
    Labrunie, Simon
    Pincon, Bruno
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (06): : 1029 - 1066
  • [37] Periodic solutions of the Vlasov-Poisson system with boundary conditions
    Bostan, M
    Poupaud, F
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2000, 10 (05): : 651 - 672
  • [38] REGULARITY OF SOLUTIONS OF THE VLASOV-POISSON SYSTEM IN 3 DIMENSIONS
    LIONS, PL
    PERTHAME, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 311 (04): : 205 - 210
  • [39] A Uniqueness Criterion for Unbounded Solutions to the Vlasov-Poisson System
    Miot, Evelyne
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 346 (02) : 469 - 482
  • [40] Approximate solutions for the Vlasov-Poisson system with boundary layers
    Jung, Chang-Yeol
    Kwon, Bongsuk
    Suzuki, Masahiro
    Takayama, Masahiro
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 469