Preparation of Nanoplatelet-Like MoS2/rGO Composite as High-Performance Anode Material for Lithium-Ion Batteries

被引:1
|
作者
Pan, Shugang [1 ,2 ]
Zhang, Ning [1 ]
Fu, Yongsheng [2 ]
机构
[1] Changzhou Vocat Inst Light Ind, Changzhou, Peoples R China
[2] Nanjing Univ Sci & Technol, Key Lab Soft Chem & Funct Mat, Minist Educ, Nanjing, Jiangsu, Peoples R China
关键词
MoS2; nanoplatelet; reduced graphene oxide; nanocomposite; lithium-ion batteries; REDUCED GRAPHENE OXIDE; ENERGY-STORAGE; ELECTROCHEMICAL PERFORMANCE; HIGH-CAPACITY; ULTRATHIN NANOSHEETS; 3D ARCHITECTURES; LAYER MOS2; HYBRID; ELECTRODE; GROWTH;
D O I
10.1142/S1793292019500334
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, we report a facile strategy to design and prepare reduced graphene oxide (rGO) supported MoS2 nanoplatelet (MoS2/rGO) via a solvothermal co-assembly process. It is found that in the as-obtained MoS2/rGO nanocomposite, MoS2 possesses unique platelet structure and rGO is exfoliated due to the in situ growth of MoS2 nanoplatelet, leading to a large specific surface area, facilitating rapid diffusion of lithium ions. The nanocomposite is used as a promising anode material for lithium-ion batteries and displays a high initial charge capacity (1382 mAh g(-1)), excellent rate capability and cycling stability. The remarkable lithium storage performance of MoS2/rGO nanocomposite is mainly ascribed to the inherent nanostructure of the MoS2, and the synergistic effect between rGO nanosheets and MoS2 nanoplatelets.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Facile synthesis of hierarchical hollow MoS2 nanotubes as anode materials for high-performance lithium-ion batteries
    Li, Guangda
    Zeng, Xiaoying
    Zhang, Tiandong
    Ma, Wanyong
    Li, Wenpeng
    Wang, Meng
    CRYSTENGCOMM, 2014, 16 (47): : 10754 - 10759
  • [22] Interlayer-expanded MoS2/graphene composites as anode materials for high-performance lithium-ion batteries
    Yanjie Wang
    Mengmeng Zhen
    Huiling Liu
    Cheng Wang
    Journal of Solid State Electrochemistry, 2018, 22 : 3069 - 3076
  • [23] Interlayer-expanded MoS2/graphene composites as anode materials for high-performance lithium-ion batteries
    Wang, Yanjie
    Zhen, Mengmeng
    Liu, Huiling
    Wang, Cheng
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2018, 22 (10) : 3069 - 3076
  • [24] Unique three-dimensional hierarchical heterogeneous MoS2/graphene structures as a high-performance anode material for lithium-ion batteries
    Long, Fei
    Chen, Yi
    Wu, Caihong
    Wang, Jilin
    Mo, Shuyi
    Zou, Zhengguang
    Zheng, Guoyuan
    IONICS, 2021, 27 (05) : 1977 - 1986
  • [25] Unique three-dimensional hierarchical heterogeneous MoS2/graphene structures as a high-performance anode material for lithium-ion batteries
    Fei Long
    Yi Chen
    Caihong Wu
    Jilin Wang
    Shuyi Mo
    Zhengguang Zou
    Guoyuan Zheng
    Ionics, 2021, 27 : 1977 - 1986
  • [26] Interlayer Distance Dependency of Lithium Storage in MoS2 as Anode Material for Lithium-ion Batteries
    Qian, Xiaofang
    Wang, Yourong
    Zhou, Wei
    Zhang, Liping
    Song, Guangsen
    Cheng, Siqing
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (04): : 3510 - 3517
  • [27] MoO2-MoS2 composite coated with polyaniline as an anode material for high-performance lithium ion batteries
    Xu, Huanting
    Jiang, Chaokui
    Ye, Wenbin
    Xiong, Deping
    Chen, Li
    Feng, Zuyong
    Wen, Kunhua
    Li, Zhaoying
    He, Miao
    IONICS, 2024, 30 (01) : 85 - 94
  • [28] Ultrasmall Fe2O3 nanoparticles/MoS2 nanosheets composite as high-performance anode material for lithium ion batteries
    Qu, Bin
    Sun, Yue
    Liu, Lianlian
    Li, Chunyan
    Yu, Changjian
    Zhang, Xitian
    Chen, Yujin
    SCIENTIFIC REPORTS, 2017, 7
  • [29] Ultrasmall Fe2O3 nanoparticles/MoS2 nanosheets composite as high-performance anode material for lithium ion batteries
    Bin Qu
    Yue Sun
    Lianlian Liu
    Chunyan Li
    Changjian Yu
    Xitian Zhang
    Yujin Chen
    Scientific Reports, 7
  • [30] MoO2-MoS2 composite coated with polyaniline as an anode material for high-performance lithium ion batteries
    Huanting Xu
    Chaokui Jiang
    Wenbin Ye
    Deping Xiong
    Li Chen
    Zuyong Feng
    Kunhua Wen
    Zhaoying Li
    Miao He
    Ionics, 2024, 30 : 85 - 94