Thermal transport in graphene field-effect transistors with ultrashort channel length

被引:25
|
作者
Ben Aissa, Mohamed Fadhel [1 ]
Rezgui, Houssem [1 ,2 ]
Nasri, Faouzi [1 ]
Belmabrouk, Hafedh [3 ,4 ]
Guizani, AmenAllah [1 ,2 ]
机构
[1] Res & Technol Ctr Energy, Lab Thermal Proc, PB 95, Hammam Lif, Tunisia
[2] Univ Tunis El Manar, Univ Campus Tunis, Manar Ii Tunis 2092, Tunisia
[3] Univ Monastir, Lab Elect & Microelect, Monastir 5019, Tunisia
[4] Majmaah Univ, Coll Sci AlZulfi, Dept Phys, Al Majmaah 11952, Saudi Arabia
关键词
Thermal transport; Thermal conductivity; Graphene field-effect transistor; Thermal stability; surface roughness; heat dissipation; BALLISTIC-DIFFUSIVE EQUATIONS; HEAT-CONDUCTION; PHONON TRANSPORT; SCATTERING; NANOSTRUCTURES; PERFORMANCE; INTERFACE; MODEL; SI;
D O I
10.1016/j.spmi.2019.02.004
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Thermal management has been widely studied to enhance the reliability of future organic nanoelectronics. Organic Field-Effect Transistors (OFETs) represent a novel technology for future nanomanufacturing of electronic devices. However, enhancing the thermal stability of transistors become a major challenge for next-generation of electronics devices. In this work, we report the thermal transport of graphene FETs (GFETs) with ultrashort channel length. In the first step, we investigate the ability of our model to characterize the heat transport in nanotransistors. To clarify the nature of the phonon-wall collisions along the channel, we have considered the effect of the temperature jump boundary condition in the oxide-graphene interface. In addition, our proposed effective thermal conductivity (ETC) model agrees with experimental results. Furthermore, we have found that graphene FETs are more thermally stable than the classical transistors based on Silicon MOSFETs.
引用
收藏
页码:265 / 273
页数:9
相关论文
共 50 条
  • [21] Nanofabrication of graphene field-effect transistors by thermal scanning probe lithography
    Liu, Xiangyu
    Huang, Zhujun
    Zheng, Xiaorui
    Shahrjerdi, Davood
    Riedo, Elisa
    APL MATERIALS, 2021, 9 (01)
  • [22] Protein Sensing Beyond the Debye Length Using Graphene Field-Effect Transistors
    Hinnemo, Malkolm
    Makaraviciute, Asta
    Ahlberg, Patrik
    Olsson, Jorgen
    Zhang, Zhen
    Zhang, Shi-Li
    Zhang, Zhi-Bin
    IEEE SENSORS JOURNAL, 2018, 18 (16) : 6497 - 6503
  • [23] TRANSPORT PROPERTIES OF FIELD-EFFECT TRANSISTORS
    HESS, K
    ACTA PHYSICA AUSTRIACA, 1977, 47 (1-2): : 31 - 57
  • [24] MODELING THE CHANNEL-LENGTH MODULATION COEFFICIENT FOR JUNCTION FIELD-EFFECT TRANSISTORS
    WONG, WW
    LIOU, JJ
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1992, 72 (04) : 533 - 540
  • [25] Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors
    Basu, D.
    Gilbert, M. J.
    Register, L. F.
    Banerjee, S. K.
    MacDonald, A. H.
    APPLIED PHYSICS LETTERS, 2008, 92 (04)
  • [26] IMPROVED REPRESENTATION OF CHANNEL-LENGTH MODULATION IN JUNCTION FIELD-EFFECT TRANSISTORS
    KUNTMAN, H
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1993, 75 (01) : 57 - 64
  • [27] Channel-length-dependent performance of photosensitive organic field-effect transistors
    Peng, Yingquan
    Guo, Fangzhi
    Xia, Hongquan
    Lv, Wenli
    Sun, Lei
    Xu, Sunan
    Zhu, Huabiao
    Chen, Xinda
    Liu, Chen
    Wang, Ying
    Lu, Feiping
    APPLIED OPTICS, 2019, 58 (06) : 1319 - 1326
  • [28] THERMAL NOISE IN FIELD-EFFECT TRANSISTORS
    VANDERZIEL, A
    PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1962, 50 (08): : 1808 - &
  • [29] Ultrashort channel chemical vapor deposited bilayer WS2 field-effect transistors
    Shi, Xinhang
    Li, Xuefei
    Guo, Qi
    Zeng, Min
    Wang, Xin
    Wu, Yanqing
    APPLIED PHYSICS REVIEWS, 2023, 10 (01)
  • [30] Graphene Nanoribbon Tunneling Field-Effect Transistors With a Semiconducting and a Semimetallic Heterojunction Channel
    Da, Haixia
    Lam, Kai-Tak
    Samudra, G.
    Chin, Sai-Kong
    Liang, Gengchiau
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (05) : 1454 - 1461