Thermal transport in graphene field-effect transistors with ultrashort channel length

被引:25
|
作者
Ben Aissa, Mohamed Fadhel [1 ]
Rezgui, Houssem [1 ,2 ]
Nasri, Faouzi [1 ]
Belmabrouk, Hafedh [3 ,4 ]
Guizani, AmenAllah [1 ,2 ]
机构
[1] Res & Technol Ctr Energy, Lab Thermal Proc, PB 95, Hammam Lif, Tunisia
[2] Univ Tunis El Manar, Univ Campus Tunis, Manar Ii Tunis 2092, Tunisia
[3] Univ Monastir, Lab Elect & Microelect, Monastir 5019, Tunisia
[4] Majmaah Univ, Coll Sci AlZulfi, Dept Phys, Al Majmaah 11952, Saudi Arabia
关键词
Thermal transport; Thermal conductivity; Graphene field-effect transistor; Thermal stability; surface roughness; heat dissipation; BALLISTIC-DIFFUSIVE EQUATIONS; HEAT-CONDUCTION; PHONON TRANSPORT; SCATTERING; NANOSTRUCTURES; PERFORMANCE; INTERFACE; MODEL; SI;
D O I
10.1016/j.spmi.2019.02.004
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Thermal management has been widely studied to enhance the reliability of future organic nanoelectronics. Organic Field-Effect Transistors (OFETs) represent a novel technology for future nanomanufacturing of electronic devices. However, enhancing the thermal stability of transistors become a major challenge for next-generation of electronics devices. In this work, we report the thermal transport of graphene FETs (GFETs) with ultrashort channel length. In the first step, we investigate the ability of our model to characterize the heat transport in nanotransistors. To clarify the nature of the phonon-wall collisions along the channel, we have considered the effect of the temperature jump boundary condition in the oxide-graphene interface. In addition, our proposed effective thermal conductivity (ETC) model agrees with experimental results. Furthermore, we have found that graphene FETs are more thermally stable than the classical transistors based on Silicon MOSFETs.
引用
收藏
页码:265 / 273
页数:9
相关论文
共 50 条
  • [1] Ultrashort Channel Length Black Phosphorus Field-Effect Transistors
    Miao, Jinshui
    Zhang, Suoming
    Cai, Le
    Scherr, Martin
    Wang, Chuan
    ACS NANO, 2015, 9 (09) : 9236 - 9243
  • [2] Channel-Length-Dependent Transport Behaviors of Graphene Field-Effect Transistors
    Han, Shu-Jen
    Chen, Zhihong
    Bol, Ageeth A.
    Sun, Yanning
    IEEE ELECTRON DEVICE LETTERS, 2011, 32 (06) : 812 - 814
  • [3] Contact length scaling in graphene field-effect transistors
    Xu, Haitao
    Wang, Sheng
    Zhang, Zhiyong
    Wang, Zhenxing
    Xu, Huilong
    Peng, Lian-Mao
    APPLIED PHYSICS LETTERS, 2012, 100 (10)
  • [4] FABRICATION AND CHARACTERIZATION OF ULTRASHORT GATE LENGTH GAAS FIELD-EFFECT TRANSISTORS
    TIBERIO, RC
    WOLF, ED
    ANDERSON, SF
    SCHAFF, WJ
    TASKER, PJ
    EASTMAN, LF
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1988, 6 (01): : 134 - 136
  • [6] Electronic spin transport in graphene field-effect transistors
    Popinciuc, M.
    Jozsa, C.
    Zomer, P. J.
    Tombros, N.
    Veligura, A.
    Jonkman, H. T.
    van Wees, B. J.
    PHYSICAL REVIEW B, 2009, 80 (21)
  • [7] Optical and thermal properties of graphene field-effect transistors
    Freitag, Marcus
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (11-12): : 2895 - 2903
  • [8] Graphene field-effect transistors
    Reddy, Dharmendar
    Register, Leonard F.
    Carpenter, Gary D.
    Banerjee, Sanjay K.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (31)
  • [9] Analysis of graphene nanoribbons as a channel material for field-effect transistors
    Obradovic, B
    Kotlyar, R
    Heinz, F
    Matagne, P
    Rakshit, T
    Giles, MD
    Stettler, MA
    Nikonov, DE
    APPLIED PHYSICS LETTERS, 2006, 88 (14)
  • [10] Performance Prediction of Graphene-Channel Field-Effect Transistors
    Sano, Eiichi
    Otsuji, Taiichi
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2009, 48 (01)