A transcendental invariant of pseudo-Anosov maps

被引:3
|
作者
Sun, Hongbin [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
MAGIC; 3-MANIFOLD; HOMEOMORPHISMS; FOLIATIONS; ENTROPY; FLOWS; NORM;
D O I
10.1112/jtopol/jtv010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each pseudo-Anosov map phi : S -> S, we associate it with a Q-vector space lying in R, and denote it by A(S,phi). The invariant A(S,phi) is defined by an interaction between the Thurston norm and the dilatation of pseudo-Anosov maps. We develop a few nice properties of A(S,phi) and give a few examples to show that A(S,phi) is a nontrivial invariant. These nontrivial examples give an answer to a question asked by McMullen, and show that the minimal point of the restriction of the dilatation function on the fibered face need not be a rational point.
引用
收藏
页码:711 / 743
页数:33
相关论文
共 50 条
  • [31] Pseudo-Anosov maps with small stretch factors on punctured surfaces
    Yazdi, Mehdi
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2020, 20 (04): : 2095 - 2128
  • [32] ON PSEUDO-ANOSOV MAPS WHICH EXTEND OVER 2 HANDLEBODIES
    LONG, DD
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1990, 33 : 181 - 190
  • [33] ENUMERATING PSEUDO-ANOSOV FOLIATIONS
    PAPADOPOULOS, A
    PENNER, RC
    PACIFIC JOURNAL OF MATHEMATICS, 1990, 142 (01) : 159 - 173
  • [34] CONSTRUCTION OF PSEUDO-ANOSOV DIFFEOMORPHISMS
    ARNOUX, P
    YOCCOZ, JC
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1981, 292 (01): : 75 - 78
  • [35] A CONSTRUCTION OF PSEUDO-ANOSOV HOMEOMORPHISMS
    PENNER, RC
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 310 (01) : 179 - 197
  • [36] On the flux of pseudo-Anosov homeomorphisms
    Colin, Vincent
    Honda, Ko
    Laudenbach, Francois
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2008, 8 (04): : 2147 - 2160
  • [37] PSEUDO-ANOSOV TEICHMULLER MAPPINGS
    MARDEN, A
    STREBEL, K
    JOURNAL D ANALYSE MATHEMATIQUE, 1986, 46 : 194 - 220
  • [38] A CHARACTERIZATION OF PSEUDO-ANOSOV FOLIATIONS
    PAPADOPOULOS, A
    PENNER, RC
    PACIFIC JOURNAL OF MATHEMATICS, 1987, 130 (02) : 359 - 377
  • [39] A Geometric Criterion to Be Pseudo-Anosov
    Kent, Richard P.
    Leininger, Christopher J.
    MICHIGAN MATHEMATICAL JOURNAL, 2014, 63 (02) : 227 - 251
  • [40] Hyperbolic pseudo-Anosov maps almost everywhere embed into a toral automorphism
    Barge, Marcy
    Kwapisz, Jaroslaw
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2006, 26 : 961 - 972