Momentum-space entanglement and renormalization in quantum field theory

被引:117
|
作者
Balasubramanian, Vijay [1 ]
McDermott, Michael B. [2 ]
Van Raamsdonk, Mark [2 ]
机构
[1] Univ Penn, David Rittenhouse Lab, Philadelphia, PA 19104 USA
[2] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1W9, Canada
来源
PHYSICAL REVIEW D | 2012年 / 86卷 / 04期
关键词
D O I
10.1103/PhysRevD.86.045014
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The degrees of freedom of any interacting quantum field theory are entangled in momentum space. Thus, in the vacuum state, the infrared degrees of freedom are described by a density matrix with an entanglement entropy. We derive a relation between this density matrix and the Wilsonian effective action obtained by integrating out degrees of freedom with spatial momentum above some scale. We argue that the entanglement entropy of and mutual information between subsets of field theoretic degrees of freedom at different momentum scales are natural observables in quantum field theory and demonstrate how to compute these in perturbation theory. The results may be understood heuristically based on the scale dependence of the coupling strength and number of degrees of freedom. We measure the rate at which entanglement between degrees of freedom declines as their scales separate and suggest that this decay is related to the property of decoupling in quantum field theory.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] QUANTUM-MECHANICS IN MOMENTUM-SPACE - THE COULOMB SYSTEM
    HOLSTEIN, BR
    AMERICAN JOURNAL OF PHYSICS, 1995, 63 (08) : 710 - 716
  • [32] Entanglement Renormalization for Quantum Fields in Real Space
    Haegeman, Jutho
    Osborne, Tobias J.
    Verschelde, Henri
    Verstraete, Frank
    PHYSICAL REVIEW LETTERS, 2013, 110 (10)
  • [33] Momentum-Space Probability Density of 6He in Halo Effective Field Theory
    Goebel, Matthias
    Hammer, Hans-Werner
    Ji, Chen
    Phillips, Daniel R.
    FEW-BODY SYSTEMS, 2019, 60 (04)
  • [34] MOMENTUM-SPACE OPERATORS IN COVARIANT-GAUGE QUANTUM ELECTRODYNAMICS - MASSLESS LIMIT OF NEUTRAL-VECTOR FIELD-THEORY
    YOKOYAMA, KI
    YAMAGAMI, S
    PROGRESS OF THEORETICAL PHYSICS, 1976, 55 (03): : 910 - 921
  • [35] MOMENTUM-SPACE REPRESENTATION IN CURVED SPACE
    CARREAU, M
    PHYSICAL REVIEW D, 1989, 40 (06): : 1956 - 1963
  • [36] MOMENTUM-SPACE ELECTRON-DENSITIES AND QUANTUM MOLECULAR SIMILARITY
    ALLAN, NL
    COOPER, DL
    MOLECULAR SIMILARITY I, 1995, 173 : 85 - 111
  • [37] Momentum-Space Renormalization Group Transformation in Bayesian Image Modeling by Gaussian Graphical Model
    Tanaka, Kazuyuki
    Nakamura, Masamichi
    Kataoka, Shun
    Ohzeki, Masayuki
    Yasuda, Muneki
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2018, 87 (08)
  • [38] Renormalization and quantum field theory
    Borcherds, Richard E.
    ALGEBRA & NUMBER THEORY, 2011, 5 (05) : 627 - 658
  • [39] Momentum-Space Josephson Effects
    Hou, Junpeng
    Luo, Xi-Wang
    Sun, Kuei
    Bersano, Thomas
    Gokhroo, Vandna
    Mossman, Sean
    Engels, Peter
    Zhang, Chuanwei
    PHYSICAL REVIEW LETTERS, 2018, 120 (12)
  • [40] Tachyons in "momentum-space" representation
    Aldaya, V.
    Guerrero, J.
    Lopez-Ruiz, F. F.
    NUCLEAR PHYSICS B, 2024, 1008