Numerical solution of the matrix equations AX plus X TB = C and AX plus X*B = C in the self-adjoint case

被引:2
|
作者
Vorontsov, Yu O. [1 ]
Ikramov, Khakim D. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow 119992, Russia
关键词
matrix equation; adjoint operator; matrix pencil; self-adjointness; semilinear operator; UNIQUE SOLVABILITY;
D O I
10.1134/S0965542514020146
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical algorithms for solving equations of the type AX + X (T) B = C or AX + X*B = C that were earlier proposed by the authors are now modified for the situations where these equations can be regarded as self-adjoint ones. The economy in computational time and work achieved through these modifications is illustrated by numerical results.
引用
收藏
页码:191 / 194
页数:4
相关论文
共 50 条
  • [41] Ranks of solutions of the linear matrix equation AX plus YB = C
    Yong Hui Liu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 52 (6-7) : 861 - 872
  • [42] CYCLIC SEXTIC TRINOMIALS x6 + Ax plus B
    Bremner, Andrew
    Spearman, Blair K.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (01) : 161 - 167
  • [43] Conditions for unique solvability of the matrix equation AX + X T B = C
    Ikramov, Kh. D.
    DOKLADY MATHEMATICS, 2010, 81 (01) : 63 - 65
  • [45] 矩阵方程AX-X~TB=C的解
    樊赵兵
    卜长江
    大学数学, 2004, (05) : 100 - 102
  • [46] ON THE MATRIX EQUATION AX+X-STARA-STAR=C
    LANCASTER, P
    ROZSA, P
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1983, 4 (04): : 432 - 436
  • [47] An alternative approach for solving the quadratic matrix equation C* X*AXC plus C* X* B plus B* XC plus D=0
    Yuan, Yongxin
    Zhang, Huiting
    Liu, Lina
    Liu, Hao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 404
  • [48] Oscillation of numerical solution in the Runge-Kutta methods for equation x'(t) = ax(t) plus a 0 x([t])
    Wang, Qi
    Qiu, Shen-shan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (04): : 943 - 950
  • [49] On nonmonogenic number fields defined by x6 + ax plus b
    Jakhar, Anuj
    Kumar, Surender
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2022, 65 (03): : 788 - 794
  • [50] On solutions of the matrix equations XF-AX=C and XF-A(X)over-bar=C
    Wu, Ai-Guo
    Duan, Guang-Ren
    Yu, Hai-Hua
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 183 (02) : 932 - 941