Numerical solution of the matrix equations AX plus X TB = C and AX plus X*B = C in the self-adjoint case

被引:2
|
作者
Vorontsov, Yu O. [1 ]
Ikramov, Khakim D. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow 119992, Russia
关键词
matrix equation; adjoint operator; matrix pencil; self-adjointness; semilinear operator; UNIQUE SOLVABILITY;
D O I
10.1134/S0965542514020146
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical algorithms for solving equations of the type AX + X (T) B = C or AX + X*B = C that were earlier proposed by the authors are now modified for the situations where these equations can be regarded as self-adjoint ones. The economy in computational time and work achieved through these modifications is illustrated by numerical results.
引用
收藏
页码:191 / 194
页数:4
相关论文
共 50 条
  • [1] Numerical solution of the matrix equations AX + XTB = C and AX + X*B = C in the self-adjoint case
    Yu. O. Vorontsov
    Khakim D. Ikramov
    [J]. Computational Mathematics and Mathematical Physics, 2014, 54 : 191 - 194
  • [2] Numerical solution of matrix equations of the form X plus AX T B = C
    Vorontsov, Yu. O.
    Ikramov, Khakim D.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (03) : 253 - 257
  • [3] FULL INVESTIGATION OF THE MATRIX EQUATION AX plus X B = C AND SPECIFICALLY OF THE EQUATION AX - X A = C
    Rabkin, E. L.
    [J]. ST PETERSBURG MATHEMATICAL JOURNAL, 2015, 26 (01) : 117 - 130
  • [4] Numerical algorithms for solving matrix equations AX plus BX T = C and AX plus BX* = C
    Vorontsov, Yu. O.
    Ikramov, Khakim D.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (06) : 667 - 676
  • [5] Operator equations AX plus Y B = C and AX A* plus BY B* = C in Hilbert C*-modules
    Mousavi, Z.
    Eskandari, R.
    Moslehian, M. S.
    Mirzapour, F.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 517 : 85 - 98
  • [6] Modifying a numerical algorithm for solving the matrix equation X plus AX T B = C
    Vorontsov, Yu. O.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (06) : 677 - 680
  • [7] CONSISTENCY OF QUATERNION MATRIX EQUATIONS AX* - XB = C AND X - AX*B = C*
    Liu, Xin
    Wang, Qing-Wen
    Zhang, Yang
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 : 394 - 407
  • [8] Numerical solution of the matrix equations AX + XTB=C and X + AXTB=C with rectangular coefficients A and B
    Vorontsov Y.O.
    Ikramov K.D.
    [J]. Journal of Mathematical Sciences, 2013, 191 (1) : 28 - 30
  • [9] The solution to matrix equation AX plus XT C = B
    Piao, Fengxian
    Zhang, Qingling
    Wang, Zhefeng
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2007, 344 (08): : 1056 - 1062
  • [10] Conditions for unique solvability of the matrix equation AX plus X*B = C
    Vorontsov, Yu O.
    Ikramov, Khakim D.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2012, 52 (05) : 665 - 673