EQUIVALENT NORMS ON FOCK SPACES WITH SOME APPLICATION TO EXTENDED CESARO OPERATORS

被引:25
|
作者
Hu, Zhangjian [1 ]
机构
[1] Huzhou Teachers Coll, Dept Math, Huzhou 313000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Fock spaces; extended Cesaro operators; BERGMAN SPACES; INEQUALITIES; INTEGRALS;
D O I
10.1090/S0002-9939-2013-11550-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F p. be the Fock space of all holomorphic functions f in C-n with the Fock norm parallel to f parallel to(p,gamma) = {integral(Cn)vertical bar f(z)e(-gamma vertical bar z vertical bar 2/2)vertical bar(p) dA(z)}(1/p) < infinity, where p,gamma are positive numbers. We prove that, given any positive integer m, the Fock norm parallel to f parallel to(p,gamma) is equivalent to Sigma(vertical bar alpha vertical bar <= m-1) vertical bar partial derivative(alpha)f(0)vertical bar + {Sigma(vertical bar alpha vertical bar=m)integral(Cn) vertical bar partial derivative(alpha)f(z)(1 + vertical bar z vertical bar)(-m)e (gamma vertical bar z vertical bar 2/2)vertical bar(p) dA(z)}(1/p). As some application we characterize these holomorphic functions g in C-n for which the induced extended Cesaro operator T-g is bounded (or compact) from one Fock space F-gamma(p) to another F-gamma(q).
引用
收藏
页码:2829 / 2840
页数:12
相关论文
共 50 条