Extended Cesaro operators between different Hardy spaces

被引:54
|
作者
Avetisyan, Karen [2 ]
Stevic, Stevo [1 ]
机构
[1] Serbian Acad Sci, Math Inst, Belgrade 11000, Serbia
[2] Yerevan State Univ, Fac Phys, Yerevan 375025, Armenia
关键词
Extended Cesaro operators; Unit ball; Hardy space; Bloch space; Boundedness; Compactness; RIEMANN-STIELTJES OPERATORS; INTEGRAL-TYPE OPERATORS; MIXED-NORM SPACES; BLOCH-TYPE SPACES; UNIT BALL; H-INFINITY; COMPACTNESS; BOUNDEDNESS; PRODUCTS;
D O I
10.1016/j.amc.2008.10.055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Hp denote the Hardy space of holomorphic functions on the unit ball B. This note gives some sufficient and necessary conditions for the boundedness and compactness of the following extended Cesaro operators T(g)f(z) = integral(1)(0) f(tz)Rg(tz)dt/t and L(g)f(z) = integral(1)(0) Rf(tz)g(tz)dt/t, where z is an element of B and g is a fixed holomorphic map on B, acting from the space H-p into the space H-q, for the case p < q. Our results extend and simplify some one-dimensional results. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:346 / 350
页数:5
相关论文
共 50 条