A simple synthesis method to prepare a molybdenum oxide hole-transporting layer for efficient polymer solar cells

被引:41
|
作者
Li, Yanping [1 ,2 ]
Yu, Huangzhong [1 ]
Huang, Xinxin [1 ,2 ]
Wu, Zuping [1 ,2 ]
Chen, Mingdong [1 ]
机构
[1] South China Univ Technol, Sch Phys & Optoelect, Guangzhou 510640, Guangdong, Peoples R China
[2] South China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
SOLUTION-PROCESSED MOO3; LOW-TEMPERATURE; INTERFACIAL LAYER; METAL-OXIDES; FILMS; INJECTION;
D O I
10.1039/c7ra00303j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a simple synthetic method to prepare amorphous molybdenum oxide (p-MoO3) using a favorably stable peroxomolybdic acid organosol as the precursor solution prepared by an ultrasonic reaction for the first time. The favorably smooth and dense surface morphology of the p-MoO3 layers are obtained under 150 degrees C thermal treatment with good optical properties and a high work function (W-F) of 5.26 eV. During the annealing treatment two different oxidation states of Mo ions are observed with increasing the annealing temperature to 150 degrees C and 200 degrees C. The best performance of the P3HT:PC71BM devices with p-MoO3 anode buffer layers has been achieved under 150 degrees C treatment with a power conversion efficiency (PCE) of 4.02%, a V-OC of 0.59 V, a J(SC) of 10.70 mA cm(-2), and a FF of 63.7%, superior to the corresponding PEDOT:PSS modified devices. Furthermore, the performance of the PTB7:PC71BM devices with the annealed p-MoO3 buffer layers has also been dramatically improved with the best performance parameters of a PCE of 8.46%, a V-OC of 0.73, a J(SC) of 17.02 mA cm(-2), a FF of 68.1% for 150 degrees C. The improved performance of the devices originates from the following factors; (i) the favorable and compact surface morphology of the annealed p-MoO3 films leading to a higher rectification ratio and lower leakage current. (ii) The formation of oxygen vacancies and the growing Mo5+ cation leading to the change of W-F under the annealing treatment. The highest W-F of 5.26 eV for 150 degrees C treatment influences the built-in electric field of the devices with the photocurrent being extracted efficiently at a short-circuit.
引用
收藏
页码:7890 / 7900
页数:11
相关论文
共 50 条
  • [31] Facile embedding of gold nanostructures in the hole transporting layer for efficient polymer solar cells
    Sarkar, Abdus Salam
    Rao, Arun D.
    Jagdish, A. K.
    Gupta, Abhishek
    Nandi, Chayan Kanti
    Ramamurthy, Praveen C.
    Pal, Suman Kalyan
    ORGANIC ELECTRONICS, 2018, 54 : 148 - 153
  • [32] Polymer solar cells with electrodeposited CuSCN nanowires as new efficient hole transporting layer
    Chappaz-Gillot, Cyril
    Berson, Solenn
    Salazar, Raul
    Lechene, Balthazar
    Aldakov, Dmitry
    Delaye, Vincent
    Guillerez, Stephane
    Ivanova, Valentina
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 120 : 163 - 167
  • [33] Simple Triphenylamine-Based Hole-Transporting Materials for Perovskite Solar Cells
    Lv, Songtao
    Song, Yakun
    Xiao, Junyan
    Zhu, Lifeng
    Shi, Jiangjian
    Wei, Huiyun
    Xu, Yuzhuan
    Dong, Juan
    Xu, Xin
    Wang, Shirong
    Xiao, Yin
    Luo, Yanhong
    Li, Dongmei
    Li, Xianggao
    Meng, Qingbo
    ELECTROCHIMICA ACTA, 2015, 182 : 733 - 741
  • [34] A graphene oxide/oxygen deficient molybdenum oxide nanosheet bilayer as a hole transport layer for efficient polymer solar cells
    Chen, Shan
    Yu, Xiaowen
    Zhang, Miao
    Cao, Jiamin
    Li, Yingru
    Ding, Liming
    Shi, Gaoquan
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (36) : 18380 - 18383
  • [35] Molecular Doping of a Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells
    Luo, Junsheng
    Zhu, Jinqing
    Lin, Fangyan
    Xia, Jianxing
    Yang, Hua
    Yang, Jinyu
    Wang, Ruilin
    Yuan, Junyu
    Wan, Zhongquan
    Li, Ning
    Brabec, Christoph J.
    Jia, Chunyang
    CHEMISTRY OF MATERIALS, 2022, 34 (04) : 1499 - 1508
  • [36] Core Fusion Engineering of Hole-Transporting Materials for Efficient Perovskite Solar Cells
    Liang, Lusheng
    Wang, Yang
    Zhang, Zilong
    Wang, Junwei
    Feng, Kui
    Ma, Suxiang
    Li, Yongchun
    Guo, Xugang
    Gao, Peng
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (02) : 1250 - 1258
  • [37] Benzodithiazole-Based Hole-Transporting Material for Efficient Perovskite Solar Cells
    Swetha, T.
    Akhtaruzzaman, Md
    Chowdhury, Towhid H.
    Amin, Nowshad
    Islam, Ashraful
    Noda, Takeshi
    Upadhyaya, Hari M.
    Singh, Surya Prakash
    ASIAN JOURNAL OF ORGANIC CHEMISTRY, 2018, 7 (12) : 2497 - 2503
  • [38] Synthesis and use of a hyper-connecting crosslinking agent in the hole-transporting layer of perovskite solar cells
    Watson, Brian L.
    Rolston, Nicholas
    Bush, Kevin A.
    Taleghani, Leila
    Dauskardt, Reinhold H.
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (36) : 19267 - 19279
  • [39] Planar starburst hole-transporting materials for highly efficient perovskite solar cells
    Ma, Xing-Juan
    Zhu, Xiang-Dong
    Wang, Kai-Li
    Igbari, Femi
    Yuan, Yi
    Zhang, Yue
    Gao, Chun-Hong
    Jiang, Zuo-Quan
    Wang, Zhao-Kui
    Liao, Liang-Sheng
    NANO ENERGY, 2019, 63
  • [40] Bilayer chlorophyll derivatives as efficient hole-transporting layers for perovskite solar cells
    Li, Na
    Dall'Agnese, Chunxiang
    Zhao, Wenjie
    Duan, Shengnan
    Chen, Gang
    Sasaki, Shin-ichi
    Tamiaki, Hitoshi
    Sanehira, Yoshitaka
    Miyasaka, Tsutomu
    Wang, Xiao-Feng
    MATERIALS CHEMISTRY FRONTIERS, 2019, 3 (11) : 2357 - 2362