A NOTE ON DIMENSION OF TRIANGULATED CATEGORIES

被引:0
|
作者
Minamoto, Hiroyuki [1 ]
机构
[1] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
关键词
ALGEBRAS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we study the behavior of the dimension of the perfect derived category Perf(A) of a dg-algebra A over a field k under a base field extension K/k. In particular, we show that the dimension of a perfect derived category is invariant under a separable algebraic extension K/k. As an application we prove the following statement: Let A be a self-injective algebra over a perfect field k. If the dimension of the stable category (mod) under barA is 0, then A is of finite representation type. This theorem is proved by M. Yoshiwaki in the case when k is an algebraically closed field. Our proof depends on his result.
引用
收藏
页码:4209 / 4214
页数:6
相关论文
共 50 条
  • [31] Completions of Triangulated Categories
    Krause, Henning
    TRIANGULATED CATEGORIES IN REPRESENTATION THEORY AND BEYOND, ABEL SYMPOSIUM 2022, 2024, 17 : 169 - 193
  • [32] A NULLSTELLENSATZ FOR TRIANGULATED CATEGORIES
    Bondarko, M. V.
    Sosnilo, V. A.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (06) : 889 - 898
  • [33] Discrete triangulated categories
    Broomhead, Nathan
    Pauksztello, David
    Ploog, David
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2018, 50 (01) : 174 - 188
  • [34] Descent in triangulated categories
    Balmer, Paul
    MATHEMATISCHE ANNALEN, 2012, 353 (01) : 109 - 125
  • [35] On A∞-enhancements for triangulated categories
    Kajiura, Hiroshige
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (08) : 1476 - 1503
  • [36] Derived and Triangulated Categories
    Lipman, Joseph
    Hashimoto, Mitsuyasu
    FOUNDATIONS OF GROTHENDIECK DUALITY FOR DIAGRAMS OF SCHEMES, 2009, 1960 : 11 - 42
  • [37] Separability and triangulated categories
    Balmer, Paul
    ADVANCES IN MATHEMATICS, 2011, 226 (05) : 4352 - 4372
  • [38] Determinants in triangulated categories
    Vaknin, A
    K-THEORY, 2001, 24 (01): : 57 - 68
  • [39] Quotient triangulated categories
    Xiao-Wu Chen
    Pu Zhang
    manuscripta mathematica, 2007, 123 : 167 - 183
  • [40] Triangulated Categories of Periodic Complexes and Orbit Categories
    Liu, Jian
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (03) : 765 - 792