An Electromagnetic Approach to Smart Card Instruction Identification using Machine Learning Techniques

被引:0
|
作者
Tsague, Hippolyte Djonon [1 ]
Twala, Bheki [2 ]
机构
[1] SIR, MDS, Smart Token Res Grp, Pretoria, South Africa
[2] Univ Johannesburg, Fac Engn, Inst Intelligent Syst, Dept Elect & Elect Engn Sci, Johannesburg, South Africa
关键词
Side Channel Leakage; Electromagnetic Templates; Principal Components Analysis; Linear Discriminant Analysis; Multivariate Gaussian Distribution; k-Nearest Neighbours Algorithm; Reverse Engineering; POWER;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Since the first publication, side channel leakage has been widely used for the purposes of extracting secret information, such as cryptographic keys, from embedded devices. However, in a few instances it has been utilized for extracting other information about the internal state of a computing device. In this paper, we show how to create a robust instruction-level side channel leakage profile of an embedded processor. Using the electromagnetic profile we show how to extract executed instructions from a smart card's leakage with good accuracy. In addition, we provide a comparison between several performance and recognition enhancement tools.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Automatic Language Identification using Machine learning Techniques
    Venkatesan, Hariraj
    Venkatasubramanian, T. Varun
    Sangeetha, J.
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATION AND ELECTRONICS SYSTEMS (ICCES 2018), 2018, : 583 - 588
  • [12] Software defect identification using machine learning techniques
    Ceylan, Evren
    Kudubay, F. Onur
    Bener, Ayse B.
    32ND EUROMICRO CONFERENCE ON SOFTWARE ENGINEERING AND ADVANCED APPLICATIONS (SEAA) - PROCEEDINGS, 2006, : 240 - +
  • [13] Identification of Novel Antibacterials Using Machine Learning Techniques
    Ivanenkov, Yan A.
    Zhavoronkov, Alex
    Yamidanov, Renat S.
    Osterman, Ilya A.
    Sergiev, Petr V.
    Aladinskiy, Vladimir A.
    Aladinskaya, Anastasia V.
    Terentiev, Victor A.
    Veselov, Mark S.
    Ayginin, Andrey A.
    Kartsev, Victor G.
    Skvortsov, Dmitry A.
    Chemeris, Alexey V.
    Baimiev, Alexey Kh.
    Sofronova, Alina A.
    Malyshev, Alexander S.
    Filkov, Gleb I.
    Bezrukov, Dmitry S.
    Zagribelnyy, Bogdan A.
    Putin, Evgeny O.
    Puchinina, Maria M.
    Dontsova, Olga A.
    FRONTIERS IN PHARMACOLOGY, 2019, 10
  • [14] DDOS Attack Identification using Machine Learning Techniques
    Peneti, Subhashini
    Hemalatha, E.
    2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,
  • [15] Cybercrime: Identification and Prediction Using Machine Learning Techniques
    Veena, K.
    Meena, K.
    Kuppusamy, Ramya
    Teekaraman, Yuvaraja
    Angadi, Ravi V.
    Thelkar, Amruth Ramesh
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [16] Credit card fraud detection using Machine Learning Techniques: A Comparative Analysis
    Awoyemi, John O.
    Adetunmbi, Adebayo O.
    Oluwadare, Samuel A.
    PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON COMPUTING NETWORKING AND INFORMATICS (ICCNI 2017), 2017,
  • [17] The identification and localization of speaker using fusion techniques and machine learning techniques
    Rasha H. Ali
    Mohammed Najm Abdullah
    Buthainah F. Abed
    Evolutionary Intelligence, 2024, 17 : 133 - 149
  • [18] The identification and localization of speaker using fusion techniques and machine learning techniques
    Ali, Rasha H.
    Abdullah, Mohammed Najm
    Abed, Buthainah F.
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (01) : 133 - 149
  • [19] Autonomous credit card fraud detection using machine learning approach
    Roseline, J. Femila
    Naidu, Gbsr
    Pandi, V. Samuthira
    Rajasree, S. Alamelu Alias
    Mageswari, Dr N.
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 102
  • [20] Autonomous credit card fraud detection using machine learning approach☆
    Femila Roseline, J.
    Naidu, G.B.S.R.
    Samuthira Pandi, V.
    Alamelu alias Rajasree, S.
    Mageswari, Dr.N.
    Computers and Electrical Engineering, 2022, 102