Comparative study on analytical and computational aerodynamic models for flapping wings MAVs

被引:1
|
作者
Valdez, M. F. [1 ,2 ,3 ]
Balachandran, B. [4 ]
Preidikman, S. [5 ,6 ]
机构
[1] Univ Nacl Salta, Fac Ingn, Salta, Argentina
[2] Univ Nacl Salta, Inst Invest Energia Convenc, Salta, Argentina
[3] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
[4] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
[5] Univ Nacl Cordoba, Inst Estudios Avanzados Ingn & Tecnol IDIT, RA-5000 Cordoba, Argentina
[6] Consejo Nacl Invest Cient & Tecn, RA-5000 Cordoba, Argentina
来源
AERONAUTICAL JOURNAL | 2020年 / 124卷 / 1280期
关键词
Unsteady aerodynamics; Bioinspired micro-air vehicles; Vorticity dominated flows; Unsteady vortex lattice method; LOCUST FLIGHT; PERFORMANCE; FORCES; VORTEX; FLUID; HOVER; FLOW; MECHANISMS; BIOLOGY; PHYSICS;
D O I
10.1017/aer.2020.45
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A range of quasi-steady and unsteady aerodynamic models are used to predict the aerodynamic forces experienced by a flapping wing and a detailed comparison amongst these predictions in provided. The complexity of the models ranges from the analytical potential flow model to the computational Unsteady Vortex Lattice Method (UVLM), which allows one to describe the motion of the wake and account for its influence on the fluid loads. The novelty of this effort lies in a modification of the predicted forces as a generalisation of the leading edge suction analogy. This modification is introduced to account for the delayed stall mechanism due to leading edge flow separation. The model predictions are compared with two sets of independent experimental data and with computational fluid dynamics (CFD) simulation data available in the literature. It is found that both, the modified analytical model and the UVLM model can be used to describe the time history of the lift force, in some cases with better results than a high-fidelity CFD model. The models presented here constitute a useful basis for the aerodynamic design of bioinspired flapping-wings micro-air vehicles.
引用
收藏
页码:1636 / 1665
页数:30
相关论文
共 50 条
  • [21] A Comparative Study on the Efficiencies of Aerodynamic Reduced Order Models of Rigid and Aeroelastic Sweptback Wings
    Yilmaz, Ozge Ozkaya
    Kayran, Altan
    AEROSPACE, 2024, 11 (08)
  • [22] Aerodynamic effects of corrugation in flapping insect wings in forward flight
    Xueguang Meng
    Mao Sun
    Journal of Bionic Engineering, 2011, 8 : 140 - 150
  • [23] Aerodynamic Model for Insect Flapping Wings with Induced Flow Effect
    Faisal, A. H. M.
    Filippone, A.
    JOURNAL OF AIRCRAFT, 2016, 53 (03): : 701 - 712
  • [24] Approximate Aerodynamic and Aeroelastic Modeling of Flapping Wings in Forward Flight
    Gogulapati, Abhijit
    Friedmann, Peretz P.
    AIAA JOURNAL, 2014, 52 (01) : 213 - 219
  • [25] Aerodynamic effects of corrugation in flapping insect wings in hovering flight
    Meng, Xue Guang
    Xu, Lei
    Sun, Mao
    JOURNAL OF EXPERIMENTAL BIOLOGY, 2011, 214 (03): : 432 - 444
  • [26] Effects of stroke deviation on hovering aerodynamic performance of flapping wings
    Hu, Fujia
    Liu, Xiaomin
    PHYSICS OF FLUIDS, 2019, 31 (11)
  • [27] Aerodynamic effects of corrugation and deformation in flapping wings of hovering hoverflies
    Du, Gang
    Sun, Mao
    JOURNAL OF THEORETICAL BIOLOGY, 2012, 300 : 19 - 28
  • [29] Scaling of Aerodynamic Forces of Three-Dimensional Flapping Wings
    Lua, K. B.
    Lim, T. T.
    Yeo, K. S.
    AIAA JOURNAL, 2014, 52 (05) : 1095 - 1101
  • [30] Numerical Investigation on Flapping Aerodynamic Performance of Dragonfly Wings in Crosswind
    Wang, Chao
    Zhang, Rui
    Zhou, Chaoying
    Sun, Zhenzhong
    INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING, 2020, 2020