Exact tail asymptotics for the M/M/m retrial queue with nonpersistent customers

被引:10
|
作者
Kim, Bara [2 ]
Kim, Jeongsim [1 ]
机构
[1] Chungbuk Natl Univ, Dept Math Educ, Cheongju 361763, Chungbuk, South Korea
[2] Korea Univ, Dept Math, Seoul 136701, South Korea
基金
新加坡国家研究基金会;
关键词
M/M/m retrial queue; Nonpersistent customers; Tail asymptotics; Karamata's Tauberian theorem;
D O I
10.1016/j.orl.2012.09.004
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the M/M/m retrial queue with nonpersistent customers. Liu et al. (2011) [12] provided the asymptotic lower and upper bounds for the stationary distribution of the number of customers in the orbit. In this paper we strengthen Liu, Wang and Zhao's result by finding the exact tail asymptotic formula. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:537 / 540
页数:4
相关论文
共 50 条
  • [21] Approximation of M/M/c retrial queue with PH-retrial times
    Shin, Yang Woo
    Moon, Dug Hee
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2011, 213 (01) : 205 - 209
  • [22] TAIL ASYMPTOTICS FOR WAITING TIME DISTRIBUTION OF AN M/M/s QUEUE WITH GENERAL IMPATIENT TIME
    Sakuma, Yutaka
    Inoie, Atsushi
    Kawanishi, Ken'ichi
    Miyazawa, Masakiyo
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2011, 7 (03) : 593 - 606
  • [23] Analysis of an M/M/1 Retrial Queue with Speed Scaling
    Tuan Phung-Duc
    Rogiest, Wouter
    [J]. QUEUEING THEORY AND NETWORK APPLICATIONS, 2016, 383 : 113 - 124
  • [24] THE UNRELIABLE M/M/1 RETRIAL QUEUE IN A RANDOM ENVIRONMENT
    Cordeiro, James D.
    Kharoufeh, Jeffrey P.
    [J]. STOCHASTIC MODELS, 2012, 28 (01) : 29 - 48
  • [25] The M/M/c retrial queue with geometric loss and feedback
    Choi, BD
    Kim, YC
    Lee, YW
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 36 (06) : 41 - 52
  • [26] Finite-source M/M/S retrial queue with search for balking and impatient customers from the orbit
    Wuechner, Patrick
    Sztrik, Janos
    de Meer, Hermann
    [J]. COMPUTER NETWORKS, 2009, 53 (08) : 1264 - 1273
  • [27] Asymptotic bounds for an optimal state-dependent retrial rate of the M/M/1 queue with returning customers
    Elcan, A
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1999, 30 (3-4) : 129 - 140
  • [28] M/M/1 Retrial Queue with Collisions and Transmission Errors
    Lamia Lakaour
    Djamil Aïssani
    Karima Adel-Aissanou
    Kamel Barkaoui
    [J]. Methodology and Computing in Applied Probability, 2019, 21 : 1395 - 1406
  • [29] Retrial Queue M/M/N with Impatient Customer in the Orbit
    Danilyuk, Elena
    Vygoskaya, Olga
    Moiseeva, Svetlana
    [J]. DISTRIBUTED COMPUTER AND COMMUNICATION NETWORKS (DCCN 2018), 2018, 919 : 493 - 504
  • [30] Tail Asymptotics for a Retrial Queue with Bernoulli Schedule
    Liu, Bin
    Zhao, Yiqiang Q.
    [J]. MATHEMATICS, 2022, 10 (15)