Micropattern formation in supported lipid membranes

被引:301
|
作者
Groves, JT
Boxer, SG [1 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
关键词
D O I
10.1021/ar950039m
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Phospholipid vesicles exhibit a natural tendency to fuse and assemble into a continuous single bilayer membrane on silica and several other substrate materials. The resulting supported membrane maintains many of the physical and biological characteristics of free membranes, including lateral fluidity. Recent advances, building on the supported membrane configuration, have created a wealth of opportunities for the manipulation, control, and analysis of membranes and the reaction environments they provide. The work reviewed in this Account, which can be broadly characterized as the science and technology of membrane patterning, contains three basic components: lateral diffusion control (barriers), membrane deposition techniques (microarrays), and electric field-induced lateral reorganization. Collectively, these preparative and analytical patterned membrane techniques offer a broad experimental platform for the study and utilization of lipid membranes.
引用
收藏
页码:149 / 157
页数:9
相关论文
共 50 条
  • [31] Protein Domain Formation in Lipid Membranes
    Hamill, Andrea C.
    Butler, Paul
    Porcar, Lionel
    Garg, Sumit
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 59A - 59A
  • [32] Method for fabricating supported bilayer lipid membranes on gold
    Lahiri, J
    Kalal, P
    Frutos, AG
    Jonas, ST
    Schaeffler, R
    LANGMUIR, 2000, 16 (20) : 7805 - 7810
  • [33] Lipid membranes supported by polydimethylsiloxane substrates with designed geometry
    Rinaldin, Melissa
    ten Haaf, Sebastiaan L. D.
    Vegter, Ernst J.
    van der Wel, Casper
    Fonda, Piermarco
    Giomi, Luca
    Kraft, Daniela J.
    SOFT MATTER, 2024, 20 (37) : 7379 - 7386
  • [34] Conducting polymer polypyrrole supported bilayer lipid membranes
    Shao, Y
    Jin, YD
    Wang, JL
    Wang, L
    Zhao, F
    Dong, SJ
    BIOSENSORS & BIOELECTRONICS, 2005, 20 (07): : 1373 - 1379
  • [35] Electrical manipulation of supported lipid membranes by embedded electrodes
    Jackson, Bryan L.
    Nye, Jeffrey A.
    Groves, Jay T.
    LANGMUIR, 2008, 24 (12) : 6189 - 6193
  • [36] A Lipid Photoswitch Controls Fluidity in Supported Bilayer Membranes
    Urban, Patrick
    Pritzl, Stefanie D.
    Ober, Martina F.
    Dirscherl, Christina F.
    Pernpeintner, Carla
    Konrad, David B.
    Frank, James A.
    Trauner, Dirk
    Nickel, Bert
    Lohmueller, Theobald
    LANGMUIR, 2020, 36 (10) : 2629 - 2634
  • [37] Impact of a model synovial fluid on supported lipid membranes
    Kreuzer, M.
    Strobl, M.
    Reinhardt, M.
    Hemmer, M. C.
    Hauss, T.
    Dahint, R.
    Steitz, R.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2012, 1818 (11): : 2648 - 2659
  • [38] Preparation of supported lipid membranes for aquaporin Z incorporation
    Li, Xuesong
    Wang, Rong
    Tang, Chuyang
    Vararattanavech, Ardcharaporn
    Zhao, Yang
    Torres, Jaume
    Fane, Tony
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2012, 94 : 333 - 340
  • [39] Solid-supported lipid membranes for protein incorporation
    McGillivray, DJ
    Valincius, G
    Vanderah, DJ
    Woodward, JT
    Febo, W
    Kasianowicz, JJ
    Lösche, M
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U1071 - U1071
  • [40] Supported Bilayer Lipid Membranes as Ion and Molecular Probes
    Membrane Biophysics Lab, Department of Physiology, Michigan State University, East Lansing, MI 48824, United States
    不详
    不详
    Anal. Sci., 1 (3-18):