Aerodynamic Leidenfrost effect

被引:30
|
作者
Gauthier, Anais [1 ,2 ]
Bird, James C. [3 ]
Clanet, Christophe [1 ,2 ]
Quere, David [1 ,2 ]
机构
[1] ESPCI, CNRS, UMR 7636, Phys & Mecan Milieux Heterogenes, F-75005 Paris, France
[2] Ecole Polytech, CNRS, UMR 7646, LadHyX, F-91128 Palaiseau, France
[3] Boston Univ, Dept Mech Engn, Boston, MA 02155 USA
来源
PHYSICAL REVIEW FLUIDS | 2016年 / 1卷 / 08期
关键词
ROTATING-DISK; MOTION; DROP; FLOW; LEVITATION; BUBBLES; RATCHET; LIQUID; TUBES;
D O I
10.1103/PhysRevFluids.1.084002
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
When deposited on a plate moving quickly enough, any liquid can levitate as it does when it is volatile on a very hot solid (Leidenfrost effect). In the aerodynamic Leidenfrost situation, air gets inserted between the liquid and the moving solid, a situation that we analyze. We observe two types of entrainment. (i) The thickness of the air gap is found to increase with the plate speed, which is interpreted in the Landau-Levich-Derjaguin frame: Air is dynamically dragged along the surface and its thickness results from a balance between capillary and viscous effects. (ii) Air set in motion by the plate exerts a force on the levitating liquid. We discuss the magnitude of this aerodynamic force and show that it can be exploited to control the liquid and even to drive it against gravity.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A mathematical model of the Leidenfrost effect on an axisymmetric droplet
    Myers, T. G.
    Charpin, J. P. F.
    PHYSICS OF FLUIDS, 2009, 21 (06)
  • [22] Probing Leidenfrost effect via contact electrification
    Li, Roujuan
    Li, Xiang
    Zhang, Fujian
    Zhang, Ruishan
    Zhang, Zhongqiang
    Wang, Zhong Lin
    Wei, Di
    NANO ENERGY, 2025, 134
  • [23] Suppression of the Leidenfrost effect via low frequency vibrations
    Ng, Boon T.
    Hung, Yew M.
    Tan, Ming K.
    SOFT MATTER, 2015, 11 (04) : 775 - 784
  • [24] Dry ice hoverboard: Friction reduction by the Leidenfrost effect
    Parrenin, Antoine
    Liefferink, Rinse W.
    Bonn, Daniel
    PHYSICAL REVIEW E, 2021, 103 (02)
  • [25] Dynamic Leidenfrost Effect: Relevant Time and Length Scales
    Shirota, Minori
    van Limbeek, Michiel A. J.
    Sun, Chao
    Prosperetti, Andrea
    Lohse, Detlef
    PHYSICAL REVIEW LETTERS, 2016, 116 (06)
  • [26] Anomalous Impact of Surface Wettability on Leidenfrost Effect at Nanoscale
    王玥
    余晓翔
    万骁
    杨诺
    邓程程
    Chinese Physics Letters, 2021, 38 (09) : 77 - 82
  • [27] LEIDENFROST
    NICHOLDS, KE
    CRYOGENICS, 1970, 10 (01) : 45 - &
  • [28] THE EFFECT OF THE SURFACE INCLINATION ON THE HYDRODYNAMICS AND THERMODYNAMICS OF LEIDENFROST DROPLETS
    Pournaderi, P.
    Pishevar, A. R.
    JOURNAL OF MECHANICS, 2014, 30 (02) : 145 - 151
  • [29] Anti-Lotus effect for nanostructuring at the Leidenfrost temperature
    Elbahri, Mady
    Paretkar, Dadhichi
    Hirmas, Khaled
    Jebril, Seid
    Adelung, Rainer
    ADVANCED MATERIALS, 2007, 19 (09) : 1262 - +
  • [30] Drag Reduction and Leidenfrost Effect on Submerged Ratcheted Cylinder
    Jonas, Adrian
    Orejon, Daniel
    Sefiane, Khellil
    HEAT TRANSFER ENGINEERING, 2023, 44 (21-22) : 2040 - 2061