Interfacing Superconducting Qubits With Cryogenic Logic: Readout

被引:24
|
作者
Howington, Caleb [1 ]
Opremcak, Alex [2 ]
McDermott, Robert [2 ]
Kirichenko, Alex [3 ]
Mukhanov, Oleg A. [3 ]
Plourde, Britton L. T. [1 ]
机构
[1] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
[2] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA
[3] SeeQC Inc, Elmsford, NY 10523 USA
基金
美国国家科学基金会;
关键词
Superconducting devices; Josephson junctions; superconducting integrated circuits; CIRCUITS;
D O I
10.1109/TASC.2019.2908884
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As superconducting quantum processors increase in size and complexity, the scalability of standard techniques for qubit control and readout becomes a limiting factor. Replacing room temperature analog components with cryogenic digital components could allow for the realization of systems well beyond the current state-of-the-art qubit arrays with tens of qubits. The standard technique for performing a qubit measurement with heterodyne readout uses a quantum-limited cryogenic amplifier chain and requires bulky microwave components inside the refrigerator with multiple control lines and pump signals. Additionally, the result is only accessible in software at room temperature. An alternative method for measuring qubits involves mapping the qubit state onto the photon occupation in a microwave cavity, followed by subsequent photon detection using a Josephson photomultiplier (JPM). The JPM measures the qubit and stores the result in a classical circulating current. To make use of this result, we can leverage existing single flux quantum (SFQ) circuitry. An underdamped Josephson transmission line (JTL) can be coupled to the JPM and fluxons traveling along the JTL are accelerated or delayed, depending on the circulating current state of the JPM. This fluxon delay can then be converted to an SFQ logic signal resulting in a digital qubit readout with a proximal microfabricated device, paving the way for cryogenic digital feedback necessary for error-correcting codes.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Dispersive Readout of Majorana Qubits
    Smith, Thomas B.
    Cassidy, Maja C.
    Reilly, David J.
    Bartlett, Stephen D.
    Grimsmo, Arne L.
    PRX QUANTUM, 2020, 1 (02):
  • [42] Fully CMOS integrated programmable charge-to-digital readout operating at cryogenic temperature for semiconductor qubits
    Castriotta, Michele
    Guiducci, Giovanni
    Prati, Enrico
    Ferrari, Giorgio
    2022 IEEE SILICON NANOELECTRONICS WORKSHOP (SNW), 2022,
  • [43] Enhancing Dispersive Readout of Superconducting Qubits through Dynamic Control of the Dispersive Shift: Experiment and Theory
    Swiadek, Francois
    Shillito, Ross
    Magnard, Paul
    Remm, Ants
    Hellings, Christoph
    Lacroix, Nathan
    Ficheux, Quentin
    Zanuz, Dante Colao
    Norris, Graham J.
    Blais, Alexandre
    Krinner, Sebastian
    Wallraff, Andreas
    PRX QUANTUM, 2024, 5 (04):
  • [44] A 40 nm Cryo-CMOS Homodyne-Demodulation Readout SoC for Superconducting Qubits
    Minn, Donggyu
    Kang, Kiseo
    Lee, Jaeho
    Bae, Seongchan
    Kim, Byungjun
    Lee, Jaehoon
    Sim, Jae-Yoon
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2024,
  • [45] Josephson parametric phase-locked oscillator and its application to dispersive readout of superconducting qubits
    Lin, Z. R.
    Inomata, K.
    Koshino, K.
    Oliver, W. D.
    Nakamura, Y.
    Tsai, J. S.
    Yamamoto, T.
    NATURE COMMUNICATIONS, 2014, 5
  • [46] Lifetime renormalization of driven weakly anharmonic superconducting qubits. II. The readout problem
    Petrescu, Alexandru
    Malekakhlagh, Moein
    Tureci, Hakan E.
    PHYSICAL REVIEW B, 2020, 101 (13)
  • [47] Josephson parametric phase-locked oscillator and its application to dispersive readout of superconducting qubits
    Z.R. Lin
    K. Inomata
    K. Koshino
    W.D. Oliver
    Y. Nakamura
    J.S. Tsai
    T. Yamamoto
    Nature Communications, 5
  • [48] High-contrast readout of superconducting qubits beyond the single-shot resolution limit
    Lisenfeld, J.
    Lukashenko, A.
    Ustinov, A. V.
    APPLIED PHYSICS LETTERS, 2007, 91 (23)
  • [49] Nano-Strip Three-Terminal Superconducting Device for Cryogenic Detector Readout
    Pagano, Sergio
    Martucciello, Nadia
    Cristiano, Roberto
    Ejrnaes, Mikkel
    Casaburi, Alessandro
    Leoni, Roberto
    Gaggero, Alessandro
    Mattioli, Francesco
    Villegier, Jean Claude
    Cavalier, Paul
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2011, 21 (03) : 717 - 720
  • [50] Optical bias and cryogenic laser readout of a multipixel superconducting nanowire single photon detector
    Thiele, Frederik
    Lamberty, Niklas
    Hummel, Thomas
    Bartley, Tim
    APL PHOTONICS, 2024, 9 (07)