Information criteria for impulse response function matching estimation of DSGE models

被引:26
|
作者
Hall, Alastair R. [2 ]
Inoue, Atsushi [1 ]
Nason, James M. [3 ]
Rossi, Barbara [4 ,5 ]
机构
[1] NCSU, Dept Agr & Resource Econ, Raleigh, NC 27695 USA
[2] Univ Manchester, Manchester M13 9PL, Lancs, England
[3] Fed Reserve Bank Philadelphia, Philadelphia, PA USA
[4] Univ Pompeu Fabra, CREI, ICREA, Barcelona, Spain
[5] Barcelona GSE, Barcelona, Spain
基金
美国国家科学基金会;
关键词
VECTOR AUTOREGRESSIVE MODELS; MONETARY-POLICY; NOMINAL RIGIDITIES; INDIRECT INFERENCE; MOMENTS ESTIMATION; GENERALIZED-METHOD; BUSINESS-CYCLE; SELECTION;
D O I
10.1016/j.jeconom.2012.05.019
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose new information criteria for impulse response function matching estimators (IRFMEs). These estimators yield sampling distributions of the structural parameters of dynamic stochastic general equilibrium (DSGE) models by minimizing the distance between sample and theoretical impulse responses. First, we propose an information criterion to select only the responses that produce consistent estimates of the true but unknown structural parameters: the Valid Impulse Response Selection Criterion (VIRSC). The criterion is especially useful for mis-specified models. Second, we propose a criterion to select the impulse responses that are most informative about DSGE model parameters: the Relevant Impulse Response Selection Criterion (RIRSC). These criteria can be used in combination to select the subset of valid impulse response functions with minimal dimension that yields asymptotically efficient estimators. The criteria are general enough to apply to impulse responses estimated by VARs, local projections, and simulation methods. We show that the use of our criteria significantly affects estimates and inference about key parameters of two well-known new Keynesian DSGE models. Monte Carlo evidence indicates that the criteria yield gains in terms of finite sample bias as well as offering tests statistics whose behavior is better approximated by the first order asymptotic theory. Thus, our criteria improve existing methods used to implement IRFMEs. (C) 2012 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:499 / 518
页数:20
相关论文
共 50 条
  • [31] INTEGRAL CRITERIA AND RESPONSE TO UNIT IMPULSE
    MARINKOVIC, V
    IEEE TRANSACTIONS ON CIRCUIT THEORY, 1966, CT13 (02): : 204 - +
  • [32] Motion Estimation with Multiple Matching Criteria
    de Oliveira, Gabriel L.
    Peixoto, Eduardo
    de Queiroz, Ricardo L.
    2017 IEEE 19TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2017,
  • [33] A new unique impulse response function in linear vector autoregressive models
    Shi, Yanlin
    INTERNATIONAL REVIEW OF FINANCE, 2023, 23 (02) : 460 - 468
  • [34] ON VARIATIONAL BAYES ESTIMATION AND VARIATIONAL INFORMATION CRITERIA FOR LINEAR REGRESSION MODELS
    You, Chong
    Ormerod, John T.
    Mueller, Samuel
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2014, 56 (01) : 73 - 87
  • [35] Loss function-based evaluation of DSGE models
    Schorfheide, F
    JOURNAL OF APPLIED ECONOMETRICS, 2000, 15 (06) : 645 - 670
  • [36] A Note on the Role of the Natural Condition of Control in the Estimation of DSGE Models
    Fukac, Martin
    Havlena, Vladimir
    FINANCE A UVER-CZECH JOURNAL OF ECONOMICS AND FINANCE, 2011, 61 (05): : 453 - 466
  • [37] Trend Agnostic One-Step Estimation of DSGE Models
    Ferroni, Filippo
    B E JOURNAL OF MACROECONOMICS, 2011, 11 (01):
  • [38] Bayesian estimation of DSGE models: Identification using a diagnostic indicator
    Chadha, Jagjit S.
    Shibayama, Katsuyuki
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2018, 95 : 172 - 186
  • [39] Solving DSGE portfolio choice models with dispersed private information
    Tille, Cedric
    van Wincoop, Eric
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2014, 40 : 1 - 24
  • [40] Design selection criteria for discrimination/estimation for nested models and a binomial response
    Waterhouse, T. H.
    Woods, D. C.
    Eccleston, J. A.
    Lewis, S. M.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (01) : 132 - 144