Herschel-Bulkley fluids:: Existence and regularity of steady flows

被引:44
|
作者
Málek, J
Ruzicka, M
Shelukhin, VV
机构
[1] Charles Univ Prague, Fac Math & Phys, Math Inst, Prague 18675 8, Czech Republic
[2] Univ Freiburg, Math Inst, Sect Appl Math, D-79104 Freiburg, Germany
[3] Russian Acad Sci, MA Lavrentev Hydrodynam Inst, Siberian Div, Novosibirsk 630090, Russia
来源
基金
俄罗斯基础研究基金会;
关键词
Herschel-Bulkley fluids; weak solutions; interior regularity;
D O I
10.1142/S0218202505000996
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The equations for steady flows of Herschel-Bulkley fluids are considered and the existence of a weak solution is proved for the Dirichlet boundary-value problem. The rheology of such a fluid is defined by a yield stress tau* and a discontinuous constitutive relation between the Cauchy stress and the symmetric part of the velocity gradient. Such a fluid stiffens if its local stresses do not exceed tau*, and it behaves like a non-Newtonian fluid otherwise. We address here a class of nonlinear fluids which includes shear-thinning p-law fluids with 9/5 < p <= 2. The flow equations are formulated in the stress-velocity setting (cf. Ref. 25). Our approach is different from that of Duvaut-Lions (cf. Ref. 10) developed for classical Bingham visco-plastic materials. We do not apply the variational inequality but make use of an approximation of the Herschel-Bulkley fluid with a generalized Newtonian fluid with a continuous constitutive law.
引用
收藏
页码:1845 / 1861
页数:17
相关论文
共 50 条
  • [21] A modified lattice boltzmann method for herschel-bulkley fluids
    Wu, Weiwei
    Huang, Xiaodiao
    Yuan, Hong
    Xu, Fei
    Ma, Jingtao
    RHEOLOGICA ACTA, 2017, 56 (04) : 369 - 376
  • [22] Yield surfaces for Herschel-Bulkley flows in complex geometries
    Craster, RV
    IMA JOURNAL OF APPLIED MATHEMATICS, 1996, 56 (03) : 253 - 276
  • [23] Spreading Kinetics of Herschel-Bulkley Fluids Over Solid Substrates
    Zhang, Jie
    Gu, Hai
    Sun, Jianhua
    Li, Bin
    Jiang, Jie
    Wu, Weiwei
    FRONTIERS IN PHYSICS, 2020, 8
  • [24] To determine Herschel-Bulkley coefficients
    Klotz, JA
    Brigham, WE
    JOURNAL OF PETROLEUM TECHNOLOGY, 1998, 50 (11): : 80 - 81
  • [25] Shear rate corrections for Herschel-Bulkley fluids on Couette geometry
    Kelessidis, Vassilios C.
    Maglione, Roberto
    APPLIED RHEOLOGY, 2008, 18 (03)
  • [26] Two-dimensional dam break flows of Herschel-Bulkley fluids: The approach to the arrested state
    Matson, G. P.
    Hogg, A. J.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2007, 142 (1-3) : 79 - 94
  • [27] Combined effects of compressibility and slip in flows of a Herschel-Bulkley fluid
    Damianou, Yiolanda
    Georgiou, Georgios C.
    Moulitsas, Irene
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2013, 193 : 89 - 102
  • [28] FLOW SIMULATION OF HERSCHEL-BULKLEY FLUIDS THROUGH EXTRUSION DIES
    MITSOULIS, E
    ABDALI, SS
    MARKATOS, NC
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1993, 71 (01): : 147 - 160
  • [29] Laminar entry flow of Herschel-Bulkley fluids in a circular pipe
    Gupta, RC
    Zhao, Y
    ADVANCES IN FLUID MECHANICS III, 2000, 26 : 135 - 144
  • [30] Modeling of Steady Herschel-Bulkley Fluid Flow over a Sphere
    Gavrilov, A. A.
    Finnikov, K. A.
    Podryabinkin, E. V.
    JOURNAL OF ENGINEERING THERMOPHYSICS, 2017, 26 (02) : 197 - 215