Herschel-Bulkley fluids:: Existence and regularity of steady flows

被引:44
|
作者
Málek, J
Ruzicka, M
Shelukhin, VV
机构
[1] Charles Univ Prague, Fac Math & Phys, Math Inst, Prague 18675 8, Czech Republic
[2] Univ Freiburg, Math Inst, Sect Appl Math, D-79104 Freiburg, Germany
[3] Russian Acad Sci, MA Lavrentev Hydrodynam Inst, Siberian Div, Novosibirsk 630090, Russia
来源
基金
俄罗斯基础研究基金会;
关键词
Herschel-Bulkley fluids; weak solutions; interior regularity;
D O I
10.1142/S0218202505000996
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The equations for steady flows of Herschel-Bulkley fluids are considered and the existence of a weak solution is proved for the Dirichlet boundary-value problem. The rheology of such a fluid is defined by a yield stress tau* and a discontinuous constitutive relation between the Cauchy stress and the symmetric part of the velocity gradient. Such a fluid stiffens if its local stresses do not exceed tau*, and it behaves like a non-Newtonian fluid otherwise. We address here a class of nonlinear fluids which includes shear-thinning p-law fluids with 9/5 < p <= 2. The flow equations are formulated in the stress-velocity setting (cf. Ref. 25). Our approach is different from that of Duvaut-Lions (cf. Ref. 10) developed for classical Bingham visco-plastic materials. We do not apply the variational inequality but make use of an approximation of the Herschel-Bulkley fluid with a generalized Newtonian fluid with a continuous constitutive law.
引用
收藏
页码:1845 / 1861
页数:17
相关论文
共 50 条
  • [1] Herschel-Bulkley fluids:: Existence and regularity of steady flows (vol 15, pg 1845, 2005)
    Málek, J
    Ruzicka, M
    Shelukhin, VV
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (02): : 317 - 317
  • [2] Concentric cylinder viscometer flows of Herschel-Bulkley fluids
    Skadsem, Hans Joakim
    Saasen, Arild
    APPLIED RHEOLOGY, 2019, 29 (01) : 173 - 181
  • [3] SOLUTIONS FOR HERSCHEL-BULKLEY FLOWS
    CRASTER, RV
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1995, 48 : 343 - 374
  • [4] Existence of Weak Solutions for Unsteady Motions of Herschel-Bulkley Fluids
    Eberlein, Hannes
    Ruzicka, Michael
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2012, 14 (03) : 485 - 500
  • [5] Application of the augmented Lagrangian method to steady pipe flows of Bingham, Casson and Herschel-Bulkley fluids
    Huilgol, RR
    You, Z
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2005, 128 (2-3) : 126 - 143
  • [6] The Dynamics of Compressible Herschel-Bulkley Fluids in Die-Swell Flows
    Belblidia, F.
    Haroon, T.
    Webster, M. F.
    DAMAGE AND FRACTURE MECHANICS: FAILURE ANALYSIS OF ENGINEERING MATERIALS AND STRUCTURES, 2009, : 425 - +
  • [7] Flow instabilities of Herschel-Bulkley fluids
    Alexandrou, AN
    Le Menn, P
    Georgiou, G
    Entov, V
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2003, 116 (01) : 19 - 32
  • [8] An eddy-viscosity model for turbulent flows of Herschel-Bulkley fluids
    Lovato, S.
    Keetels, G. H.
    Toxopeus, S. L.
    Settels, J. W.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2022, 301
  • [9] The evolution of laminar jets of Herschel-Bulkley fluids
    Jafri, IH
    Vradis, GC
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1998, 41 (22) : 3575 - 3588
  • [10] ENTRANCE FLOW OF HERSCHEL-BULKLEY FLUIDS IN A DUCT
    BATRA, RL
    KANDASAMY, A
    FLUID DYNAMICS RESEARCH, 1990, 6 (01) : 43 - 50