Girth and fractional chromatic number of planar graphs

被引:0
|
作者
Pirnazar, A [1 ]
Ullman, DH [1 ]
机构
[1] George Washington Univ, Dept Math, Washington, DC 20052 USA
关键词
fractional chromatic number; girth; planar graphs; four-color theorem;
D O I
10.1002/jgt.10024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1959, even before the Four-Color Theorem was proved, Grotzsch showed that planar graphs with girth at least 4 have chromatic number at the most 3. We examine the fractional analogue of this theorem and its generalizations. For any fixed girth, we ask for the largest possible fractional chromatic number of a planar graph with that girth, and we provide upper and lower bounds for this quantity. (C) 2002 Wiley Periodicals, Inc.
引用
收藏
页码:201 / 217
页数:17
相关论文
共 50 条
  • [31] The circular chromatic number of series-parallel graphs with large girth
    Chien, CY
    Zhu, XD
    [J]. JOURNAL OF GRAPH THEORY, 2000, 33 (04) : 185 - 198
  • [32] On the chromatic number of graphs of odd girth without longer odd holes
    Wang, Hongyang
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 342 : 227 - 230
  • [33] Fractional chromatic number and circular chromatic number for distance graphs with large clique size
    Liu, DDF
    Zhu, XD
    [J]. JOURNAL OF GRAPH THEORY, 2004, 47 (02) : 129 - 146
  • [34] Star list chromatic number of planar subcubic graphs
    Min Chen
    André Raspaud
    Weifan Wang
    [J]. Journal of Combinatorial Optimization, 2014, 27 : 440 - 450
  • [35] The r-acyclic chromatic number of planar graphs
    Wang, Guanghui
    Yan, Guiying
    Yu, Jiguo
    Zhang, Xin
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 29 (04) : 713 - 722
  • [36] On the vertex face total chromatic number of planar graphs
    Wang, WF
    Liu, JZ
    [J]. JOURNAL OF GRAPH THEORY, 1996, 22 (01) : 29 - 37
  • [37] Relaxed game chromatic number of outer planar graphs
    Wu, Jiaojiao
    Zhu, Xuding
    [J]. ARS COMBINATORIA, 2006, 81 : 359 - 367
  • [38] Star list chromatic number of planar subcubic graphs
    Chen, Min
    Raspaud, Andre
    Wang, Weifan
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (03) : 440 - 450
  • [39] The fractional chromatic number of generalized cones over graphs
    Zhu, Jialu
    Zhu, Xuding
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (02):
  • [40] BOUNDING THE FRACTIONAL CHROMATIC NUMBER OF KΔ-FREE GRAPHS
    Edwards, Katherine
    King, Andrew D.
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (02) : 1184 - 1208