Novel hole-transporting materials based on 1,4-bis(carbazolyl)benzene for organic light-emitting devices

被引:148
|
作者
Zhang, Q
Chen, JS
Cheng, YX
Wang, LX [1 ]
Ma, DG
Jing, XB
Wang, FS
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China
[2] NE Normal Univ, Dept Chem, Changchun 130024, Peoples R China
关键词
D O I
10.1039/b309630k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Novel hole-transporting molecules containing 1,4-bis(carbazolyl)benzene as a central unit and different numbers of diphenylamine moieties as the peripheral groups have been synthesized and characterized. These compounds are thermally stable with high glass transition temperatures of 141-157 degreesC and exhibit chemically reversible redox processes. Their amorphous state stability and hole transport properties can be significantly improved by increasing the number of diphenylamine moieties in the outer part and by controlling the symmetry of the carbazole-based molecules. These compounds can be used as good hole-tran sporting materials for organic electroluminescent (EL) devices. The device performance based on tri- and tetra-substituted carbazole derivatives is comparable to that of a typical 4,4'-bis[N-(1-naphthyl)-N-phenylamino] biphenyl (NPB)-based device.
引用
收藏
页码:895 / 900
页数:6
相关论文
共 50 条
  • [11] A high Tg carbazole-based hole-transporting material for organic light-emitting devices
    Li, JY
    Liu, D
    Li, YQ
    Lee, CS
    Kwong, HL
    Lee, ST
    CHEMISTRY OF MATERIALS, 2005, 17 (05) : 1208 - 1212
  • [12] Synthesis and characterization of high Tg carbazole-based amorphous hole-transporting materials for organic light-emitting devices
    Thaengthong, A-Monrat
    Saengsuwan, Sayant
    Jungsuttiwong, Siriporn
    Keawin, Tinnagon
    Sudyoadsuk, Taweesak
    Promarak, Vinich
    TETRAHEDRON LETTERS, 2011, 52 (37) : 4749 - 4752
  • [13] High Tg fluorene-based hole-transporting materials for organic light-emitting diodes
    Shao, KF
    Li, YF
    Yang, LM
    Xu, XJ
    Yu, G
    Liu, YQ
    CHEMISTRY LETTERS, 2005, 34 (12) : 1604 - 1605
  • [14] Perfluorocyclobutane-based arylamine hole-transporting materials for organic and polymer light-emitting diodes
    Jiang, XZ
    Liu, S
    Liu, MS
    Herguth, P
    Jen, AKY
    Sarikaya, M
    ADVANCED FUNCTIONAL MATERIALS, 2002, 12 (11-12) : 745 - 751
  • [15] Wet-processable triphenylamine dendrimers as hole-transporting and hole-injection materials for organic light-emitting devices
    Ichikawa, Musubu
    Hibino, Kumiko
    Yokoyama, Norimasa
    Miki, Tetsuzo
    Koyama, Toshiki
    Taniguchi, Yoshio
    2007 SID INTERNATIONAL SYMPOSIUM, DIGEST OF TECHNICAL PAPERS, VOL XXXVIII, BOOKS I AND II, 2007, 38 : 816 - +
  • [16] High Tg triphenylamine-based starburst hole-transporting material for organic light-emitting devices
    Tong, Qing-Xiao
    Lai, Shiu-Lun
    Chan, Mei-Yee
    Lai, Ka-Ho
    Tang, Jian-Xin
    Kwong, Hol-Lun
    Lee, Chun-Sing
    Lee, Shuit-Tong
    CHEMISTRY OF MATERIALS, 2007, 19 (24) : 5851 - 5855
  • [17] Novel hole-transporting materials based on triphenylamine for organic electroluminescent devices
    Tanaka, H
    Tokito, S
    Taga, Y
    Okada, A
    CHEMICAL COMMUNICATIONS, 1996, (18) : 2175 - 2176
  • [18] Improved performance of organic light-emitting diodes using advanced hole-transporting materials
    Hwang, Seok-Hwan
    Kim, Young Kook
    Kwak, Yoonhyun
    Lee, Chang-Ho
    Lee, Jonghyuk
    Kim, Sungchul
    SYNTHETIC METALS, 2009, 159 (23-24) : 2578 - 2583
  • [19] Electromodulation of fluorescence in hole-transporting materials (TPD, TAPC) for organic light-emitting diodes
    Stampor, W
    CHEMICAL PHYSICS, 2000, 256 (03) : 351 - 362
  • [20] Solution-processable dendric triphenylamine nonamers as hole-transporting and hole-injection materials for organic light-emitting devices
    Ichikawa, Musubu
    Hibino, Kumiko
    Yokoyama, Norimasa
    Miki, Tetsuzo
    Koyama, Toshiki
    Taniguchi, Yoshio
    SYNTHETIC METALS, 2006, 156 (21-24) : 1383 - 1389