Novel hole-transporting materials based on 1,4-bis(carbazolyl)benzene for organic light-emitting devices

被引:148
|
作者
Zhang, Q
Chen, JS
Cheng, YX
Wang, LX [1 ]
Ma, DG
Jing, XB
Wang, FS
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China
[2] NE Normal Univ, Dept Chem, Changchun 130024, Peoples R China
关键词
D O I
10.1039/b309630k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Novel hole-transporting molecules containing 1,4-bis(carbazolyl)benzene as a central unit and different numbers of diphenylamine moieties as the peripheral groups have been synthesized and characterized. These compounds are thermally stable with high glass transition temperatures of 141-157 degreesC and exhibit chemically reversible redox processes. Their amorphous state stability and hole transport properties can be significantly improved by increasing the number of diphenylamine moieties in the outer part and by controlling the symmetry of the carbazole-based molecules. These compounds can be used as good hole-tran sporting materials for organic electroluminescent (EL) devices. The device performance based on tri- and tetra-substituted carbazole derivatives is comparable to that of a typical 4,4'-bis[N-(1-naphthyl)-N-phenylamino] biphenyl (NPB)-based device.
引用
收藏
页码:895 / 900
页数:6
相关论文
共 50 条
  • [1] Investigation of TDAPBs as hole-transporting materials for organic light-emitting devices (OLEDs)
    Jonda, C
    Mayer, ABR
    Thelakkat, M
    Schmidt, HW
    Schreiber, A
    Haarer, D
    Terrell, D
    ADVANCED MATERIALS FOR OPTICS AND ELECTRONICS, 1999, 9 (03): : 117 - 128
  • [2] Thermally stable triphenylene-based hole-transporting materials for organic light-emitting devices
    Park, Jong-Yek
    Kim, Jeong Mi
    Lee, Haejin
    Ko, Kwang-Youn
    Yook, Kyoung Soo
    Lee, Jun Yeob
    Baek, Yong Gu
    THIN SOLID FILMS, 2011, 519 (18) : 5917 - 5923
  • [3] Hole-transporting materials for organic light-emitting diodes: an overview
    Shahnawaz
    Swayamprabha, Sujith Sudheendran
    Nagar, Mangey Ram
    Yadav, Rohit Ashok Kumar
    Gull, Sanna
    Dubey, Deepak Kumar
    Jou, Jwo-Huei
    JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (24) : 7144 - 7158
  • [4] Small molecular hole-transporting and emitting materials for hole-only green organic light-emitting devices
    Liu, Xicheng
    Liang, Junfei
    You, Jing
    Ying, Lei
    Xiao, Yin
    Wang, Shirong
    Li, Xianggao
    DYES AND PIGMENTS, 2016, 131 : 41 - 48
  • [5] Phenylazomethine dendrimer complexes as novel hole-transporting materials of organic light-emitting diodes
    Cho, JS
    Takanashi, K
    Higuchi, M
    Yamamoto, KT
    SYNTHETIC METALS, 2005, 150 (01) : 79 - 82
  • [6] Highly efficient organic light-emitting diodes using novel hole-transporting materials
    Kim, Young Kook
    Hwang, Seok-Hwan
    SYNTHETIC METALS, 2006, 156 (16-17) : 1028 - 1035
  • [7] Organometallic complexes as hole-transporting materials in organic light-emitting diodes
    Ren, XF
    Alleyne, BD
    Djurovich, PI
    Adachi, C
    Tsyba, I
    Bau, R
    Thompson, ME
    INORGANIC CHEMISTRY, 2004, 43 (05) : 1697 - 1707
  • [8] Electroabsorption in triphenylamine-based hole-transporting materials for organic light-emitting diodes
    Stampor, Waldemar
    Mroz, Wojciech
    CHEMICAL PHYSICS, 2007, 331 (2-3) : 261 - 269
  • [9] Mixing effect of hole-injecting and hole-transporting materials on the performance and lifetime of organic light-emitting devices
    Kim, Y
    Oh, E
    Lim, H
    Ha, CS
    APPLIED PHYSICS LETTERS, 2006, 88 (04) : 1 - 3
  • [10] Organic light-emitting devices using polyacene derivatives as a hole-transporting layer
    Okumoto, Kenji
    Kanno, Hiroshi
    Hamada, Yuji
    Takahashi, Hisakazu
    Shibata, Kenichi
    JOURNAL OF APPLIED PHYSICS, 2006, 100 (04)