A nonparametric test of conditional autoregressive heteroscedasticity for threshold autoregressive models

被引:0
|
作者
Chen, M [1 ]
Chen, GM [1 ]
机构
[1] Chinese Acad Sci, Inst Appl Math, Beijing 100080, Peoples R China
关键词
conditional heteroscedasticity; nonparametric test; threshold autoregressive model;
D O I
10.2307/3316013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Threshold autoregressive models are widely used in time-series applications. When building or using such a model, it is important to know whether conditional heteroscedasticity exists. The authors propose a nonparametric test of this hypothesis. They develop the large-sample theory of a test of nonlinear conditional heteroscedasticity adapted to nonlinear autoregressive models and study its finite-sample properties through simulations. They also provide percentage points for carrying out this test, which is found to have very good power overall.
引用
收藏
页码:649 / 666
页数:18
相关论文
共 50 条
  • [41] A Perturbation Method to Optimize the Parameters of Autoregressive Conditional Heteroscedasticity Model
    Xuejie Feng
    Chiping Zhang
    [J]. Computational Economics, 2020, 55 : 1021 - 1044
  • [42] EFFECT OF AUTOREGRESSIVE DEPENDENCE ON A NONPARAMETRIC TEST
    WOLFF, SS
    GASTWIRTH, JL
    RUBIN, H
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (02) : 311 - +
  • [43] Clustering diagnosis of rolling element bearing fault based on integrated Autoregressive/Autoregressive Conditional Heteroscedasticity model
    Wang, Guofeng
    Liu, Chang
    Cui, Yinhu
    [J]. JOURNAL OF SOUND AND VIBRATION, 2012, 331 (19) : 4379 - 4387
  • [44] Lag selection and model specification testing in nonparametric autoregressive conditional heteroscedastic models
    Zambom, Adriano Z.
    Kim, Seonjin
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2017, 186 : 13 - 27
  • [45] On inference for threshold autoregressive models
    Osnat Stramer
    Yu-Jau Lin
    [J]. Test, 2002, 11 : 55 - 71
  • [46] On inference for threshold autoregressive models
    Stramer, O
    Lin, YJ
    [J]. TEST, 2002, 11 (01) : 55 - 71
  • [47] Threshold quantile autoregressive models
    Galvao, Antonio F., Jr.
    Montes-Rojas, Gabriel
    Olmo, Jose
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2011, 32 (03) : 253 - 267
  • [48] Bootstrapping Threshold Autoregressive models
    Öhrvik, J
    Schoier, G
    [J]. COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 207 - 212
  • [49] Bayesian nonparametric vector autoregressive models
    Kalli, Maria
    Griffin, Jim E.
    [J]. JOURNAL OF ECONOMETRICS, 2018, 203 (02) : 267 - 282
  • [50] On minimax identification of nonparametric autoregressive models
    Bernard Delyon
    Anatoli Juditsky
    [J]. Probability Theory and Related Fields, 2000, 116 : 21 - 39