QUADRATIC TANGLES IN PLANAR ALGEBRAS

被引:31
|
作者
Jones, Vaughan F. R. [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
INTERMEDIATE SUBFACTORS;
D O I
10.1215/00127094-1723608
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In planar algebras, we show how to project certain simple quadratic tangles onto the linear space spanned by linear and constant tangles. We obtain some corollaries about the principal graphs and annular structure of subfactors.
引用
收藏
页码:2257 / 2295
页数:39
相关论文
共 50 条
  • [21] C*-ALGEBRAS FROM PLANAR ALGEBRAS I: CANONICAL C*-ALGEBRAS ASSOCIATED TO A PLANAR ALGEBRA
    Hartglass, Michael
    Penneys, David
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (06) : 3977 - 4019
  • [22] Planar Lyapunov Algebras
    Mencinger, Matej
    Zalar, Borut
    ALGEBRA COLLOQUIUM, 2020, 27 (03) : 433 - 446
  • [23] On Jones' planar algebras
    Kodiyalam, V
    Sunder, VS
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2004, 13 (02) : 219 - 247
  • [24] PERTURBATIONS OF PLANAR ALGEBRAS
    Das, Paramita
    Ghosh, Shamindra Kumar
    Gupta, Ved Prakash
    MATHEMATICA SCANDINAVICA, 2014, 114 (01) : 38 - 85
  • [25] Separable free quadratic algebras over quadratic integers
    Browkin, J
    Brzezinski, J
    JOURNAL OF NUMBER THEORY, 2004, 109 (02) : 379 - 389
  • [26] Weakly Confluent Quadratic Algebras
    Berger R.
    Algebras and Representation, 1998, 1 (3) : 189 - 213
  • [27] Crossed and Quadratic Resolutions of Algebras
    Aslan, Ahmet Faruk
    FILOMAT, 2020, 34 (14) : 4893 - 4906
  • [28] A classification of some quadratic algebras
    McGilvray, HC
    ALGEBRA COLLOQUIUM, 2006, 13 (01) : 133 - 148
  • [29] Solvable quadratic Lie algebras
    Linsheng Zhu
    Science in China Series A, 2006, 49 : 477 - 493
  • [30] PERIODIC QUADRATIC JORDAN ALGEBRAS
    HARRIS, RJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A83 - A83