Imputation with the R Package VIM

被引:355
|
作者
Kowarik, Alexander [1 ]
Templ, Matthias [1 ,2 ]
机构
[1] Stat Austria, Methods Unit, A-1110 Vienna, Austria
[2] Vienna Univ Technol, Vienna, Austria
来源
JOURNAL OF STATISTICAL SOFTWARE | 2016年 / 74卷 / 07期
关键词
missing values; imputation methods; R; MULTIPLE IMPUTATION; MISSING DATA;
D O I
10.18637/jss.v074.i07
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The package VIM (Templ, Alfons, Kowarik, and Prantner 2016) is developed to explore and analyze the structure of missing values in data using visualization methods, to impute these missing values with the built-in imputation methods and to verify the imputation process using visualization tools, as well as to produce high-quality graphics for publications. This article focuses on the different imputation techniques available in the package. Four different imputation methods are currently implemented in VIM, namely hot-deck imputation, k-nearest neighbor imputation, regression imputation and iterative robust model-based imputation (Templ, Kowarik, and Filzmoser 2011). All of these methods are implemented in a flexible manner with many options for customization. Furthermore in this article practical examples are provided to highlight the use of the implemented methods on real-world applications. In addition, the graphical user interface of VIM has been re-implemented from scratch resulting in the package VIMGUI (Schopfhauser, Templ, Alfons, Kowarik, and Prantner 2016) to enable users without extensive R skills to access these imputation and visualization methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] MIIPW: An R package for Generalized Estimating Equations with missing data integration using a combination of mean score and inverse probability weighted approaches and multiple imputation
    Bhattacharjee, Atanu
    Vishwakarma, Gajendra K.
    Rajbongshi, Bhrigu K.
    Tripathy, Abhipsa
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [42] The lrd package: An R package and Shiny application for processing lexical data
    Nicholas P. Maxwell
    Mark J. Huff
    Erin M. Buchanan
    [J]. Behavior Research Methods, 2022, 54 : 2001 - 2024
  • [43] A Novel BeiDou Satellite Transmission Framework With Missing Package Imputation Applied to Smart Ships
    Liu, Sheng
    Wu, Di
    Sun, Hongfang
    Zhang, Lanyong
    [J]. IEEE SENSORS JOURNAL, 2022, 22 (13) : 13162 - 13176
  • [44] The lrd package: An R package and Shiny application for processing lexical data
    Maxwell, Nicholas P.
    Huff, Mark J.
    Buchanan, Erin M.
    [J]. BEHAVIOR RESEARCH METHODS, 2022, 54 (04) : 2001 - 2024
  • [45] Data Editing and Imputation in Business Surveys Using "R"
    Romascanu, Elena
    [J]. ROMANIAN STATISTICAL REVIEW, 2014, (02) : 129 - 146
  • [46] JointAI: Joint Analysis and Imputation of Incomplete Data in R
    Erler, Nicole S.
    Rizopoulos, Dimitris
    Lesaffre, Emmanuel M. E. H.
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2021, 100 (20):
  • [47] imputeTS: Time Series Missing Value Imputation in R
    Moritz, Steffen
    Bartz-Beielstein, Thomas
    [J]. R JOURNAL, 2017, 9 (01): : 207 - 218
  • [48] HaploCatcher: An R package for prediction of haplotypes
    Winn, Zachary James
    Hudson-Arns, Emily
    Hammers, Mikayla
    DeWitt, Noah
    Lyerly, Jeanette
    Bai, Guihua
    St. Amand, Paul
    Nachappa, Punya
    Haley, Scott
    Mason, Richard Esten
    [J]. PLANT GENOME, 2024, 17 (01):
  • [49] grmsem: R Package for Genetic Modelling
    Barendse, Mariska
    Kiassmann, Alexander
    St Pourcain, Beate
    [J]. HUMAN HEREDITY, 2021, 85 (02) : 71 - 71
  • [50] Monitoring Data in R with the lumberjack Package
    van der Loo, Mark P. J.
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2021, 98 (01): : 1 - 13