Improved implementation of an algorithm for non-linear isotropic/kinematic hardening in elastoplasticity

被引:0
|
作者
Mahnken, R [1 ]
机构
[1] Univ Hannover, Inst Baumech & Numer Mech, D-30167 Hannover, Germany
来源
关键词
non-linear isotropic and kinematic hardening; implicit integration; one-dimensional local iteration; linearization;
D O I
10.1002/(SICI)1099-0887(199910)15:10<745::AID-CNM288>3.0.CO;2-R
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article a modification of an algorithm by Doghri (1993) for incorporating isotropic and kinematic hardening effects in von Mises elastoplasticity is proposed, whereby the discretized rate equations are reduced to a one-dimensional problem. The resulting relations for linearization of this problem and of the global equilibrium equations are obtained in a straightforward manner, which avoids inversion of second-order tensors. A numerical example illustrates the second-order convergence rate typical for the Newton method. Copyright (C) 1999 John Wiley & Sons, Ltd.
引用
收藏
页码:745 / 754
页数:10
相关论文
共 50 条
  • [41] Improved genetic algorithm in discrete variable non-linear programming problems
    He, Da-Kuo
    Wang, Fu-Li
    Mao, Zhi-Zhong
    Kongzhi yu Juece/Control and Decision, 2006, 21 (04): : 396 - 399
  • [42] A double incremental variational procedure for elastoplastic composites with combined isotropic and linear kinematic hardening
    Lucchetta, Antoine
    Auslender, Francois
    Bornert, Michel
    Kondo, Djimedo
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2019, 158 : 243 - 267
  • [43] Accurate and approximate integrations of Drucker-Prager plasticity with linear isotropic and kinematic hardening
    Rezaiee-Pajand, Mohammad
    Sharifian, Mehrzad
    Sharifian, Mehrdad
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2011, 30 (03) : 345 - 361
  • [44] A non-linear optimization algorithm
    Patel, Prashant
    Scheeres, Daniel
    SPACEFLIGHT MECHANICS 2008, VOL 130, PTS 1 AND 2, 2008, 130 : 245 - +
  • [45] NON-LINEAR VIBRATIONS OF A NON-ISOTROPIC TRAPEZOIDAL PLATE
    BISWAS, P
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1983, 14 (02): : 265 - 269
  • [46] On the thermomechanical coupling in finite strain plasticity theory with non-linear kinematic hardening by means of incremental energy minimization
    Canadija, M.
    Mosier, J.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2011, 48 (7-8) : 1120 - 1129
  • [47] On the applicability of multi-surface, two-surface and non-linear kinematic hardening models in multiaxial fatigue
    Meggiolaro, M. A.
    Castro, J. T. P.
    Wu, H.
    FRATTURA ED INTEGRITA STRUTTURALE, 2015, 9 (33): : 357 - 367
  • [48] Theoretical and numerical comparison of hyperelastic and hypoelastic formulations for Eulerian non-linear elastoplasticity
    Peshkov, Ilya
    Boscheri, Walter
    Loubere, Raphael
    Romenski, Evgeniy
    Dumbser, Michael
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 387 : 481 - 521
  • [49] Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes
    Touzé, C
    Thomas, O
    Chaigne, A
    JOURNAL OF SOUND AND VIBRATION, 2004, 273 (1-2) : 77 - 101
  • [50] Finite element implementation of large deformation micropolar plasticity exhibiting isotropic and kinematic hardening effects
    Grammenoudis, P
    Tsakmakis, C
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 62 (12) : 1691 - 1720