Building ultra-thin layers by ceramic laser sintering

被引:12
|
作者
Tang, Hwa-Hsing [1 ]
机构
[1] Natl Taipei Univ Technol, Dept Mech Engn, Taipei 10608, Taiwan
关键词
rapid prototyping; ceramic loser sintering; ultra-thin layers; powder-based process;
D O I
10.2320/matertrans.47.889
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The layer thicknesses of rapid prototyping 3D parts must be minimized to reduce the dimensional tolerance and improve the surface roughness. This paper studies the thinnest layer feasible by Ceramic Laser Sintering (CLS) and analyzes the reasons why ultra-thin layers could be built with CLS. Manufacturing a work piece with a proper scanning parameter (3200 mm/s scanning speed, 33 W laser power) verified a 20-layer square work piece could be made successfully with 0.015 mm layer thickness, which is the thinnest layer made by a powder-based process. Regarding the feasible layer thickness, effects of the following four significant influential parameters were discussed: (1) powder particle size, (2) paving force carrying capacity of paved layer, (3) upward deformation of the property transformation zone, and (4) anti-fracture strength of the property transformation zone. The reasons why CLS could build ultra-thin layers were: (1) layers were built with slurry; (2) the inherent solid green support could withstand the paving force and prevent excessive upward deformation; (3) the lowest working temperature was decreased from 1800 degrees C of Ceramic Laser Fusion to 1200 degrees C.
引用
收藏
页码:889 / 897
页数:9
相关论文
共 50 条
  • [41] Electronic Characteristics of Ultra-Thin Passivation Layers for Silicon Photovoltaics
    Pain, Sophie L.
    Khorani, Edris
    Niewelt, Tim
    Wratten, Ailish
    Fajardo, Galo J. Paez
    Winfield, Ben P.
    Bonilla, Ruy S.
    Walker, Marc
    Piper, Louis F. J.
    Grant, Nicholas E.
    Murphy, John D.
    ADVANCED MATERIALS INTERFACES, 2022, 9 (28):
  • [42] Intrinsic mechanical properties of ultra-thin amorphous carbon layers
    Lemoine, P.
    Quinn, J. P.
    Maguire, P. D.
    Zhao, J. F.
    McLaughlin, J. A.
    APPLIED SURFACE SCIENCE, 2007, 253 (14) : 6165 - 6175
  • [43] Adhesive wafer bonding with ultra-thin intermediate polymer layers
    Bleiker, S. J.
    Dubois, V.
    Schroder, S.
    Stemme, G.
    Niklaus, F.
    SENSORS AND ACTUATORS A-PHYSICAL, 2017, 260 : 16 - 23
  • [44] Ferroelectric control of magnetic domains in ultra-thin cobalt layers
    Huang, Z.
    Stolichnov, I.
    Bernand-Mantel, A.
    Borrel, J.
    Auffret, S.
    Gaudin, G.
    Boulle, O.
    Pizzini, S.
    Ranno, L.
    Diez, L. Herrera
    Setter, N.
    APPLIED PHYSICS LETTERS, 2013, 103 (22)
  • [45] Shifting Schottky barrier heights with ultra-thin dielectric layers
    Lin, L.
    Robertson, J.
    Clark, S. J.
    MICROELECTRONIC ENGINEERING, 2011, 88 (07) : 1461 - 1463
  • [46] Structure and magnetism of ultra-thin chromium layers on W(110)
    Santos, B.
    Puerta, J. M.
    Cerda, J. I.
    Stumpf, R.
    von Bergmann, K.
    Wiesendanger, R.
    Bode, M.
    McCarty, K. F.
    de la Figuera, J.
    NEW JOURNAL OF PHYSICS, 2008, 10
  • [47] Specific heat and dielectric relaxations in ultra-thin polystyrene layers
    Lupascu, V
    Huth, H
    Schick, C
    Wübbenhorst, M
    THERMOCHIMICA ACTA, 2005, 432 (02) : 222 - 228
  • [48] Properties of ultra-thin vanadium layers in V/Ru superlattices
    Liscio, F.
    Maret, M.
    Meneghini, C.
    Hazemann, J. L.
    Albrecht, M.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (48)
  • [49] Bandgap engineering of PbTe ultra-thin layers by surface passivations
    Huang, Zhihan
    Zhang, Dong
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (29)
  • [50] Growth and Alloying of Ultra-Thin Zn Layers on Pd(110)
    Stadlmayr, Werner
    Kloetzer, Bernhard
    Penner, Simon
    Memmel, Norbert
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (05): : 3635 - 3644