Investigation of Penicillin Binding Protein (PBP)-like Peptide Cyclase and Hydrolase in Surugamide Non-ribosomal Peptide Biosynthesis

被引:28
|
作者
Zhou, Yongjun [1 ]
Lin, Xiao [2 ]
Xu, Chunmin [3 ]
Shen, Yaoyao [1 ]
Wang, Shu-Ping [1 ]
Liao, Hongze [1 ]
Li, Lei [1 ]
Deng, Hai [1 ,4 ]
Lin, Hou-Wen [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Med, Ren Ji Hosp,Dept Pharm, Res Ctr Marine Drugs,State Key Lab Oncogenes & Re, Shanghai 200127, Peoples R China
[2] Jinan Univ, Coll Pharm, Guangzhou 510632, Guangdong, Peoples R China
[3] Jiangxi Univ Tradit Chinese Med, Nanchang 33004, Jiangxi, Peoples R China
[4] Univ Aberdeen, Dept Chem, Aberdeen AB24 3UE, Scotland
来源
CELL CHEMICAL BIOLOGY | 2019年 / 26卷 / 05期
基金
美国国家科学基金会;
关键词
GENE-CLUSTER; BETA-LACTAMASE; CYCLIZATION; POLYKETIDE; LOGIC;
D O I
10.1016/j.chembiol.2019.02.010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Non-ribosomal peptides (NRPs) are biosynthesized on non-ribosomal peptides synthetase (NRPS) complexes, of which a C-terminal releasing domain commonly offloads the products. Interestingly, a dedicated releasing domain is absent in surugamides (SGM) NRPS, which directs the biosynthesis of cyclic octapeptides, SGM-A to -E, and the linear decapeptide, SGM-F. Here, we confirmed that surE is essential for the production of SGMs via genetic experiments. Biochemical characterization demonstrated that the recombinant enzyme, SurE, can generate the main products SGM-A and -F from the corresponding SNAC substrates, indicating that SurE is a standalone thioesterase-like enzyme. SurE also displays considerable substrate plasticity with expanded ring or different amino acid compositions to produce different cyclopeptides, highlighting the potential of chemoenzymatic applications. Site-directed mutagenesis allowed identification of the key residues of SurE. Finally, bioinformatics analysis suggested that SurE homologs are widely distributed in bacteria, suggesting a general mechanism of NRP release in Nature.
引用
收藏
页码:737 / +
页数:12
相关论文
共 50 条
  • [21] Ironing out siderophore biosynthesis: a review of non-ribosomal peptide synthetase (NRPS)-independent siderophore synthetases
    Carroll, Cassandra S.
    Moore, Margo M.
    CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2018, 53 (04) : 356 - 381
  • [22] Diverse evolutionary solutions to β-lactam antibiotic biosynthesis and the partitioning of reactive intermediates by non-ribosomal peptide synthetases
    Townsend, Craig
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [23] Genetic and Functional Analysis of the Biosynthesis of a Non-Ribosomal Peptide Siderophore in Burkholderia xenovorans LB400
    Jose Vargas-Straube, Maria
    Camara, Beatriz
    Tello, Mario
    Montero-Silva, Francisco
    Cardenas, Franco
    Seeger, Michael
    PLOS ONE, 2016, 11 (03):
  • [24] The many faces and important roles of protein-protein interactions during non-ribosomal peptide synthesis
    Izore, Thierry
    Cryle, Max J.
    NATURAL PRODUCT REPORTS, 2018, 35 (11) : 1120 - 1139
  • [25] Type II non-ribosomal peptide synthetase proteins: structure, mechanism, and protein-protein interactions
    Jaremko, Matt J.
    Davis, Tony D.
    Corpuz, Joshua C.
    Burkart, Michael D.
    NATURAL PRODUCT REPORTS, 2020, 37 (03) : 355 - 379
  • [26] MAPPING PROTEIN-PROTEIN INTERACTION IN NON-RIBOSOMAL PEPTIDE SYNTHETASES USING A GENETICALLY ENCODED PHOTOCROSSLINKER
    Mootz, H. D.
    Dehling, E.
    Volkmann, G.
    JOURNAL OF PEPTIDE SCIENCE, 2016, 22 : S52 - S52
  • [27] Protein-protein interface analysis of the non-ribosomal peptide synthetase peptidyl carrier protein and enzymatic domains
    Corpuz, Joshua C.
    Sanlley, Javier O.
    Burkart, Michael D.
    SYNTHETIC AND SYSTEMS BIOTECHNOLOGY, 2022, 7 (02) : 677 - 688
  • [28] Active site titration of gramicidin S synthetase 2:: evidence for misactivation and editing in non-ribosomal peptide biosynthesis
    Kittelberger, R
    Pavela-Vrancic, M
    von Döhren, H
    FEBS LETTERS, 1999, 461 (03) : 145 - 148
  • [29] Identification of new, conserved, non-ribosomal peptide synthetases from fluorescent pseudomonads involved in the biosynthesis of the siderophore pyoverdine
    Mossialos, D
    Ochsner, U
    Baysse, C
    Chablain, P
    Pirnay, JP
    Koedam, N
    Budzikiewicz, H
    Fernández, DU
    Schäfer, M
    Ravel, J
    Cornelis, P
    MOLECULAR MICROBIOLOGY, 2002, 45 (06) : 1673 - 1685
  • [30] Recruitment and Regulation of the Non-ribosomal Peptide Synthetase Modifying Cytochrome P450 Involved in Nikkomycin Biosynthesis
    Wise, Courtney E.
    Makris, Thomas M.
    ACS CHEMICAL BIOLOGY, 2017, 12 (05) : 1316 - 1326