Strong duality of the Monge-Kantorovich mass transfer problem in metric spaces

被引:5
|
作者
Hernández-Lerma, O
Gabriel, JR
机构
[1] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Matemat, Mexico City 07000, DF, Mexico
[2] Univ Veracruz, Fac Matemat, Xalapa 91090, Veracruz, Mexico
关键词
Mass Transfer; Cost Function; Transfer Problem; Strong Duality; Duality Condition;
D O I
10.1007/s002090100325
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the Monge-Kantorovich mass transfer (MT) problem on metric spaces and with an unbounded cost function. Conditions are given under which the strong duality condition holds; that is, NIT and its dual MT* are both solvable and their optimal values coincide.
引用
下载
收藏
页码:579 / 591
页数:13
相关论文
共 50 条
  • [31] From the Schrodinger problem to the Monge-Kantorovich problem
    Leonard, Christian
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (04) : 1879 - 1920
  • [32] Monge-Kantorovich Norms on Spaces of Vector Measures
    Chitescu, Ion
    Ioana, Loredana
    Miculescu, Radu
    Nita, Lucian
    RESULTS IN MATHEMATICS, 2016, 70 (3-4) : 349 - 371
  • [33] Best approximation problems relating to Monge-Kantorovich duality
    Levin, V. L.
    SBORNIK MATHEMATICS, 2006, 197 (9-10) : 1353 - 1364
  • [34] The Monge-Kantorovich problem: achievements, connections, and perspectives
    Bogachev, V. I.
    Kolesnikov, A. V.
    RUSSIAN MATHEMATICAL SURVEYS, 2012, 67 (05) : 785 - 890
  • [35] Long History of the Monge-Kantorovich Transportation Problem
    Vershik, A. M.
    MATHEMATICAL INTELLIGENCER, 2013, 35 (04): : 1 - 9
  • [36] Limits for Monge-Kantorovich mass transport problems
    Garcia Azorero, Jesus
    Manfredi, Juan J.
    Peral, Ireneo
    Rossi, Julio D.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (04) : 853 - 865
  • [37] On action minimizing measures for the Monge-Kantorovich problem
    Luca Granieri
    Nonlinear Differential Equations and Applications NoDEA, 2007, 14 : 125 - 152
  • [38] Optimality conditions for smooth Monge solutions of the Monge-Kantorovich problem
    Levin, VL
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2002, 36 (02) : 114 - 119
  • [39] On regularity of transport density in the Monge-Kantorovich problem
    Buttazzo, G
    Stepanov, E
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (03) : 1044 - 1055
  • [40] On the Application of the Monge-Kantorovich Problem to Image Registration
    Museyko, O.
    Stiglmayr, M.
    Klamroth, K.
    Leugering, G.
    SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (04): : 1068 - 1097