Numerical simulation of high-temperature thermal contact resistance and its reduction mechanism

被引:7
|
作者
Liu, Donghuan [1 ]
Zhang, Jing [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing Key Lab Magnetophotoelect Composite & Int, Beijing, Peoples R China
[2] Univ Sci & Technol Beijing, Basic Expt Ctr Nat Sci, Beijing, Peoples R China
来源
PLOS ONE | 2018年 / 13卷 / 03期
基金
中国国家自然科学基金;
关键词
CONSTRICTION RESISTANCE; HEAT-CONDUCTION; INTERFACE; PERFORMANCE; FABRICATION; ALLOYS; PIPES;
D O I
10.1371/journal.pone.0194483
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-temperature thermal contact resistance (TCR) plays an important role in heat-pipe-cooled thermal protection structures due to the existence of contact interface between the embedded heat pipe and the heat resistive structure, and the reduction mechanism of thermal contact resistance is of special interests in the design of such structures. The present paper proposed a finite element model of the high-temperature thermal contact resistance based on the multi-point contact model with the consideration of temperature-dependent material properties, heat radiation through the cavities at the interface and the effect of thermal interface material (TIM), and the geometry parameters of the finite element model are determined by simple surface roughness test and experimental data fitting. The experimental results of high-temperature thermal contact resistance between superalloy GH600 and C/C composite material are employed to validate the present finite element model. The effect of the crucial parameters on the thermal contact resistance with and without TIM are also investigated with the proposed finite element model.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Review of thermal boundary resistance of high-temperature superconductors
    Prasher, RS
    Phelan, PE
    JOURNAL OF SUPERCONDUCTIVITY, 1997, 10 (05): : 473 - 484
  • [22] Installation for Determining the Contact Electrical Resistance of High-Temperature Materials
    A. V. Kostanovskiy
    M. G. Zeodinov
    A. A. Pronkin
    M. E. Kostanovskaya
    Instruments and Experimental Techniques, 2023, 66 : 1071 - 1077
  • [23] Thermal simulation of SMT components in high-temperature applications
    Hunter, Craig
    SMT Surface Mount Technology Magazine, 2011, 26 (08): : 66 - 68
  • [24] Review of Thermal Boundary Resistance of High-Temperature Superconductors
    Ravi S. Prasher
    Patrick E. Phelan
    Journal of Superconductivity, 1997, 10
  • [25] Numerical Simulation of Contact Point Temperature Distribution and Fire Mechanism Analysis
    Cai, Zhiyuan
    Meng, Jun
    Ma, Shaohua
    Li, Tie
    2010 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2010,
  • [26] High-Temperature Skin Softening Materials Overcoming the Trade-Off between Thermal Conductivity and Thermal Contact Resistance
    Kim, Taehun
    Kim, Seongkyun
    Kim, Eungchul
    Kim, Taesung
    Cho, Jungwan
    Song, Changsik
    Baik, Seunghyun
    SMALL, 2021, 17 (38)
  • [27] Numerical Simulation of the High-Temperature Oxidation of a Nanosize Aluminum Particle
    A. Yu. Krainov
    V. A. Poryazov
    K. M. Moiseeva
    D. A. Krainov
    Journal of Engineering Physics and Thermophysics, 2021, 94 : 79 - 87
  • [28] NUMERICAL SIMULATION OF THE HIGH-TEMPERATURE OXIDATION OF A NANOSIZE ALUMINUM PARTICLE
    Krainov, A. Yu
    Poryazov, V. A.
    Moiseeva, K. M.
    Krainov, D. A.
    JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS, 2021, 94 (01) : 79 - 87
  • [29] Numerical simulation of combustion of natural gas with high-temperature air
    Orsino, S
    Weber, R
    COMBUSTION SCIENCE AND TECHNOLOGY, 2001, 170 (01) : 1 - 34
  • [30] Numerical simulation of properties of a LPG flame with high-temperature air
    Yang, WH
    Blasiak, W
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2005, 44 (10) : 973 - 985