Hydrodynamic Classification of Solar Wind Flows

被引:0
|
作者
Veselovsky, I. S. [1 ,2 ]
Kaportseva, K. B. [3 ]
Lukashenko, A. T. [1 ]
机构
[1] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119234, Russia
[2] Russian Acad Sci, Space Res Inst, Moscow 117997, Russia
[3] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia
关键词
heliosphere; solar activity; solar wind; GEOMAGNETIC STORMS; SPEED; SLOW; CYCLE;
D O I
10.1134/S0038094619010088
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
At the present time, there is no generally accepted classification of the solar wind flows. There are various approaches to this problem depending on the goal of the study. In our paper, we propose the binary classification of the solar wind types by the main hydrodynamic parameters (velocity, temperature, and density) based on the statistical analysis of the solar wind. The analysis of the OMNIWeb one-minute data is performed for the period from 1996 to 2017, which encompasses solar cycle 23 and current solar cycle 24. Eight types of the solar wind are distinguished: fast-hot-dense, fast-hot-rarefied, fast-cold-dense, fast-cold-rarefied, slow-hot-dense, slow-hot-rarefied, slow-cold-dense, slow-cold-rarefied. These types occur with different frequency and are the consequences of different manifestations of solar activity. Of particular interest are the solar wind flows, the parameters of which deviate from the averages most significantly.
引用
收藏
页码:56 / 67
页数:12
相关论文
共 50 条
  • [31] Plasma flows around magnetic obstacles in the solar wind
    Romashets, E.
    Poedts, S.
    Astronomy and Astrophysics, 2007, 475 (03): : 1093 - 1100
  • [32] MAGNETIC CLASSIFICATION OF SOLAR-WIND STREAMS
    BOBROV, MS
    PLANETARY AND SPACE SCIENCE, 1979, 27 (12) : 1461 - 1467
  • [33] Composition of quasi-stationary solar wind flows from ulysses/solar wind ion composition spectrometer
    von Steiger, R
    Schwadron, NA
    Fisk, LA
    Geiss, J
    Gloeckler, G
    Hefti, S
    Wilken, B
    Wimmer-Schweingruber, RF
    Zurbuchen, TH
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2000, 105 (A12) : 27217 - 27238
  • [34] SOLAR-WIND COMPOSITION MEASUREMENTS BY THE ULYSSES SWICS EXPERIMENT DURING TRANSIENT SOLAR-WIND FLOWS
    GALVIN, AB
    GLOECKLER, G
    IPAVICH, FM
    SHAFER, CM
    GEISS, J
    OGILVIE, K
    ADVANCES IN SPACE RESEARCH-SERIES, 1993, 13 (06): : 75 - 78
  • [35] COLLISIONLESS SOLAR-WIND PROTONS - COMPARISON OF KINETIC AND HYDRODYNAMIC DESCRIPTIONS
    LEER, E
    HOLZER, TE
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1972, 53 (04): : 509 - +
  • [36] Modelling the heliolatitudinal gradient of the solar wind parameters with exact hydrodynamic solutions
    Lima, J
    Tsinganos, K
    SOLAR WIND EIGHT - PROCEEDINGS OF THE EIGHTH INTERNATIONAL SOLAR WIND CONFERENCE, 1996, (382): : 489 - 489
  • [37] SCATTERING OF MAGNETO-HYDRODYNAMIC WAVES ON THE TURBULENCE OF SOLAR-WIND
    CHASHEI, IV
    SHISHOV, VI
    GEOMAGNETIZM I AERONOMIYA, 1981, 21 (06): : 961 - 967
  • [38] COLLISIONLESS SOLAR-WIND PROTONS - COMPARISON OF KINETIC AND HYDRODYNAMIC DESCRIPTIONS
    LEER, E
    HOLZER, TE
    JOURNAL OF GEOPHYSICAL RESEARCH, 1972, 77 (22): : 4035 - +
  • [39] Flows, Fields, and Forces in the Mars-Solar Wind Interaction
    Halekas, J. S.
    Brain, D. A.
    Luhmann, J. G.
    DiBraccio, G. A.
    Ruhunusiri, S.
    Harada, Y.
    Fowler, C. M.
    Mitchell, D. L.
    Connerney, J. E. P.
    Espley, J. R.
    Mazelle, C.
    Jakosky, B. M.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (11) : 11320 - 11341
  • [40] On the influence of solar wind turbulent flows on decameter wavelength scintillations
    Olyak, M. R.
    KINEMATICS AND PHYSICS OF CELESTIAL BODIES, 2009, 25 (04) : 206 - 212