A NOVEL CONTRASTIVE LEARNING FRAMEWORK FOR SELF-SUPERVISED ANOMALY DETECTION

被引:0
|
作者
Li, Jingze [1 ]
Lian, Zhichao [2 ]
Li, Min [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Cyberspace Secur, Wuxi, Peoples R China
基金
国家重点研发计划;
关键词
anomaly detection; self-supervised learning; contrastive learning; local regions reconstitution;
D O I
10.1109/ICIP46576.2022.9898024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly detection is significant in the field of computer vision and refers to identifying those samples in dataset that are different from normal samples. In practice, abnormal products are rare and anomaly detection usually calculates the difference between the inputs and the reconstructed images by reconstruction-based methods. Contrastive learning both maximizes the similarity between a sample and its augmentations, and the differences between different samples, which is suitable for improving the detection capability of the autoencoder. Inspired by this, we design a novel contrastive learning architecture for anomaly detection. In this work, we make reasonable sample pairs to simulate possible real anomalies and maximizes the distance between normal and abnormal samples. Remarkably, our approach improves the vanilla autoencoder model by 14.4% in terms of the AUROC score on the MVTec AD.
引用
收藏
页码:3366 / 3370
页数:5
相关论文
共 50 条
  • [21] Adversarial Self-Supervised Contrastive Learning
    Kim, Minseon
    Tack, Jihoon
    Hwang, Sung Ju
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [22] A Survey on Contrastive Self-Supervised Learning
    Jaiswal, Ashish
    Babu, Ashwin Ramesh
    Zadeh, Mohammad Zaki
    Banerjee, Debapriya
    Makedon, Fillia
    [J]. TECHNOLOGIES, 2021, 9 (01)
  • [23] Self-Supervised Learning: Generative or Contrastive
    Liu, Xiao
    Zhang, Fanjin
    Hou, Zhenyu
    Mian, Li
    Wang, Zhaoyu
    Zhang, Jing
    Tang, Jie
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 857 - 876
  • [24] CutPaste: Self-Supervised Learning for Anomaly Detection and Localization
    Li, Chun-Liang
    Sohn, Kihyuk
    Yoon, Jinsung
    Pfister, Tomas
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9659 - 9669
  • [25] Contrastive Self-Supervised Learning for Globally Distributed Landslide Detection
    Ghorbanzadeh, Omid
    Shahabi, Hejar
    Piralilou, Sepideh Tavakkoli
    Crivellari, Alessandro
    La Rosa, Laura Elena Cue
    Atzberger, Clement
    Li, Jonathan
    Ghamisi, Pedram
    [J]. IEEE ACCESS, 2024, 12 : 118453 - 118466
  • [26] Contrastive self-supervised learning for diabetic retinopathy early detection
    Ouyang, Jihong
    Mao, Dong
    Guo, Zeqi
    Liu, Siguang
    Xu, Dong
    Wang, Wenting
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2023, 61 (09) : 2441 - 2452
  • [27] Shot Contrastive Self-Supervised Learning for Scene Boundary Detection
    Chen, Shixing
    Nie, Xiaohan
    Fan, David
    Zhang, Dongqing
    Bhat, Vimal
    Hamid, Raffay
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9791 - 9800
  • [28] Contrastive self-supervised learning for diabetic retinopathy early detection
    Jihong Ouyang
    Dong Mao
    Zeqi Guo
    Siguang Liu
    Dong Xu
    Wenting Wang
    [J]. Medical & Biological Engineering & Computing, 2023, 61 : 2441 - 2452
  • [29] Missing nodes detection on graphs with self-supervised contrastive learning
    Liu, Chen
    Cao, Tingting
    Zhou, Lixin
    Shao, Ying
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 132
  • [30] Self-supervised Visual Feature Learning and Classification Framework: Based on Contrastive Learning
    Wang, Zhibo
    Yan, Shen
    Zhang, Xiaoyu
    Lobo, Niels Da Vitoria
    [J]. 16TH IEEE INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2020), 2020, : 719 - 725