Vortex configurations with non-monotonic interaction

被引:8
|
作者
Zhao, H. J. [1 ]
Misko, V. R. [1 ]
Peeters, F. M. [1 ]
机构
[1] Univ Antwerp, Dept Phys, B-2020 Antwerp, Belgium
关键词
Vortex configurations; Non-monotonic interaction; Type-1.5; superconductivity; II SUPERCONDUCTORS;
D O I
10.1016/j.physc.2011.12.033
中图分类号
O59 [应用物理学];
学科分类号
摘要
The pattern formation of the vortex states with non-monotonic inter-vortex interaction is investigated. Our applied model has a short-range repulsive (r < r(c)) and long-range attractive (r > r(c)) potential. We numerically calculate the stable states using molecular-dynamics simulations. The obtained vortex patterns are comparable with the vortices states in low kappa type-II superconductors and recently discovered "type-1.5'' superconductors. We also analyze the nearest neighbor distribution of the obtained patterns. (C) 2012 Published by Elsevier B.V.
引用
收藏
页码:130 / 133
页数:4
相关论文
共 50 条
  • [31] A fixpoint theory for non-monotonic parallelism
    Chen, YF
    THEORETICAL COMPUTER SCIENCE, 2003, 308 (1-3) : 367 - 392
  • [32] A deductive system for non-monotonic reasoning
    Eiter, T
    Leone, N
    Mateis, C
    Pfeifer, G
    Scarcello, F
    LOGIC PROGRAMMING AND NONMONOTONIC REASONING, 1997, 1265 : 363 - 374
  • [33] NON-MONOTONIC LOGIC-I
    MCDERMOTT, D
    DOYLE, J
    ARTIFICIAL INTELLIGENCE, 1980, 13 (1-2) : 41 - 72
  • [34] Debt andgrowth: Is there a non-monotonic relation?
    Greiner, Alfred
    ECONOMICS BULLETIN, 2013, 33 (01): : 340 - 347
  • [35] Verification of non-monotonic knowledge bases
    Zlatareva, NP
    DECISION SUPPORT SYSTEMS, 1997, 21 (04) : 253 - 261
  • [36] A fixpoint theory for non-monotonic parallelism
    Chen, YF
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2002, 2471 : 120 - 134
  • [37] Non-Monotonic Sequential Text Generation
    Welleck, Sean
    Brantley, Kiante
    Daume, Hal, III
    Cho, Kyunghyun
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [38] On the parameterized complexity of non-monotonic logics
    Meier, Arne
    Schindler, Irina
    Schmidt, Johannes
    Thomas, Michael
    Vollmer, Heribert
    ARCHIVE FOR MATHEMATICAL LOGIC, 2015, 54 (5-6) : 685 - 710
  • [39] A model for non-monotonic intensity coding
    Nehrkorn, Johannes
    Tanimoto, Hiromu
    Herz, Andreas V. M.
    Yarali, Ayse
    ROYAL SOCIETY OPEN SCIENCE, 2015, 2 (05):
  • [40] Adams conditionals and non-monotonic probabilities
    Bradley R.
    Journal of Logic, Language and Information, 2006, 15 (1-2) : 65 - 81