Bimodal approximation for anomalous diffusion in a potential

被引:12
|
作者
Kalmykov, YP
Coffey, WT
Titov, SV
机构
[1] Univ Perpignan, Grp Phys Mol, Lab Math & Phys Syst, F-66860 Perpignan, France
[2] Univ Dublin Trinity Coll, Dept Elect & Elect Engn, Dublin 2, Ireland
[3] Russian Acad Sci, Inst Radio Engn & Elect, Fryazino 141190, Moscow Region, Russia
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 02期
关键词
D O I
10.1103/PhysRevE.69.021105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Exact and approximate solutions of the fractional diffusion equation for an assembly of fixed-axis dipoles are derived for anomalous noninertial rotational diffusion in a double-well potential. It is shown that knowledge of three time constants characterizing the normal diffusion, viz., the integral relaxation time, the effective relaxation time, and the inverse of the smallest eigenvalue of the Fokker-Planck operator, is sufficient to accurately predict the anomalous relaxation behavior for all time scales of interest.
引用
收藏
页码:021105 / 1
页数:7
相关论文
共 50 条
  • [31] Anomalous surface diffusion
    Shkilev, V.P.
    [J]. Khimicheskaya Fizika, 2005, 24 (06): : 85 - 96
  • [32] Anomalous diffusion on the servosphere: A potential tool for detecting inherent organismal movement patterns
    Nagaya, Naohisa
    Mizumoto, Nobuaki
    Abe, Masato S.
    Dobata, Shigeto
    Sato, Ryota
    Fujisawa, Ryusuke
    [J]. PLOS ONE, 2017, 12 (06):
  • [33] Anomalous transport and diffusion phenomena induced by biharmonic forces in deformable potential systems
    André Marie Fopossi Mbemmo
    Germaine Djuidjé Kenmoé
    Timoléon Crépin Kofané
    [J]. The European Physical Journal B, 2016, 89
  • [34] Anomalous Heat Diffusion
    Liu, Sha
    Haenggi, Peter
    Li, Nianbei
    Ren, Jie
    Li, Baowen
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (04)
  • [35] Anomalous diffusion in membranes
    Granek, R.
    Pierrat, S.
    Zilman, A.G.
    [J]. Materials Research Society Symposium - Proceedings, 1999, 543 : 103 - 114
  • [36] On the generation of anomalous diffusion
    Eliazar, Iddo
    Klafter, Joseph
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (47)
  • [37] ANOMALOUS BALLISTIC DIFFUSION
    HAVLIN, S
    BUNDE, A
    STANLEY, HE
    [J]. PHYSICAL REVIEW B, 1986, 34 (01): : 445 - 447
  • [38] Thermodynamics of anomalous diffusion
    [J]. Phys Rev Lett, 3 (366):
  • [39] Anomalous diffusion: Summary
    Binder, K
    [J]. ANOMALOUS DIFFUSION: FROM BASICS TO APPLICATIONS, 1999, 519 : 371 - 378
  • [40] Anomalous diffusion in zeolites
    Huang, Pan
    Yin, Zhijian
    Tian, Yun
    Yang, Jie
    Zhong, Wei
    Li, Chunzhong
    Lian, Cheng
    Yang, Li
    Liu, Honglai
    [J]. CHEMICAL ENGINEERING SCIENCE, 2021, 246